版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南师大附中2018届高考适应性月考卷(八)理科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)题号123456789101112答案DBAACBBBCACD【解析】1.由题意知:集合,集合,则,故选D.2.在复平面内,的轨迹是以为圆心,1为半径的圆,由数形结合可知,的最小值为,所以,故选B.3.由数列为等差数列,设其公差为,所以,即,故选A.4.设与的夹角为,由,所以,则与的夹角为,故选A.5.由题意可知圆柱的高为2,所以球心到底面的距离为1,又由底面的半径为1,所以圆柱的外接球的半径为,故而圆柱的外接球的表面积为,故选C.6.由函数的最大值为,则选项A不满足;由为其一个对称中心,即,选项D不满足;由,且,即函数的最小正周期为,选项C不满足;而B选项均满足,故选B.7.如图1,在中,,,则,设点为内切圆的圆心,设其内切圆的半径为,由,所以图1,故而,所以其图1内切圆的直径为步,故选B.8.由均为大于的正数,令,则,且,,,所以,,.又由,即,由,即,由幂函数在第一象限的单调性知,,故选B.9.由程序框图可知,当时,运算前的值记为,则程序输出的是,即,由程序框图可知,当输入的为正整数时,对任意的,均为正整数,而,则必有,此时,故而,的可能取值为,故选C.10.如图2,设,,,由题意知:所以,又,所以.由正弦定理可知,三角形的外接圆的直径为图2,所以外接圆的面积为,故选A.图211.当时,满足题意;当时,,要满足题意需满足,即;当时,,不合题意.综上所述,的取值范围是,故选C.12.如图3,设点为点在平面内的投影,若,则由,,两两全等,所以,故选项A正确;图3若,,由,,所以图3平面,即,同理,所以在平面内的投影为三角形的垂心,故选项B正确;若,,,则四面体可以放在长方体内,如图4,则每组对棱的中点可以看成棱所在面图4图4若三棱锥各棱长均为,则三棱锥为正四面体,到三棱锥的四个顶点距离相等的截面,如图5有两种情况:第一种情况,如图5甲,截面为边长为的正图5三角形,其面积为,故所有的截面为图5正三角形的面积和为;第二种情况,如图乙,截面为边长为的正方形,其面积为,故所有截面为正方形的面积和为,所以所有的截面面积和为,故选项D错误;综上所述,故选D.二、填空题(本大题共4小题,每小题5分,共20分)题号13141516答案401【解析】13.作出不等式组表示的平面区域,如图6中阴影部分所示,作出直线,平移直线图6图6值,所以的最小值为.14.令,则,所以,当第一个括号取时,第二个括号内要取含的项,即;当第一个括号取时,第二个括号内要取含的项,即,所以的系数为.15.设,,,则切点为的椭圆C的直线方程为:,切点为的椭圆C的直线方程为:.由两切线均过点,故而有:所以直线的方程为,则直线过定点,所以原点到直线的距离的最大值为1.16.由题意知:,,又由,则,,所以,又.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)解:(Ⅰ)由正弦定理可知:,所以,因为,而,则,所以.…………(6分)图7(Ⅱ)如图7,由及(Ⅰ)知是顶角图7为的等腰三角形,则,所以,即,又,所以,则,所以.………………………(12分)18.(本小题满分12分)解:(Ⅰ)2×2列联表补充如下:物理优秀物理不优秀总计数学优秀402060数学不优秀152540总计5545100……………………(2分)(Ⅱ)由题意知:,所以有的把握认为数学与物理的学习情况有关.………………(6分)(Ⅲ)由题意知,每名即将被询问的同学数学与物理都优秀的概率为,随机变量所有可能的取值为:,,,,,所以的期望.……………(12分)19.(本小题满分12分)(Ⅰ)证明:如图8,连接交于点,连接MO,NO,所以,又平面,且,所以平面,则有,,故而为二面角的平面角,图8由,,是边长为的菱形,且图8,可得,,又由,即,所以,所以平面平面.………(6分)(Ⅱ)解:如图9,取的中点,则平面,间直角坐标系,图9则,,,,图9所以,,,设平面的一个法向量为,则即令,则,,所以,设平面的一个法向量为,则即令,则,,所以,设锐二面角的平面角为,则,所以锐二面角的余弦值为.……………(12分)20.(本小题满分12分)解:(Ⅰ)设圆心M的坐标为,则.由题意知:,整理得:.………(4分)(Ⅱ)设所在的直线的倾斜角为,则直线的方程为,与抛物线的方程联立得:,设的横坐标分别是,则有:,同理:,所以四边形的面积, ……(12分)21.(本小题满分12分)解:(Ⅰ)由,则,所以.若,则,即函数为定义域上的增函数,由,不合题意;若,则,所以为上的增函数,且,由,不合题意;若,则,所以为上的减函数,且,由,不合题意;若,,,所以为上的增函数,为 上的减函数,所以,满足题意.综上所述,满足题意的.…………(5分)(Ⅱ)由恒成立,则,又由,等价于,即等价于函数的图象不在函数图象的上方,对于每一个大于零的,要使得的值最小,需使直线与函数的图象相切,此时,设切点为且,则切线方程可以表示为,即,所以.令,则,所以为上的减函数,为上的增函数,则,所以的最小值为0.由,等价于,即等价于函数的图象不在函数的图象的下方,同理,对于每一个大于零的,要使得的值最大,需使直线与函数的图象相切,此时,设切点为,则切线方程可以表示为,即:,所以.令,则,所以为上的增函数,为上的减函数,则,所以的最大值为. 综上所述,的取值范围是.………………(12分)22.(本小题满分10分)【选修4−4:坐标系与参数方程】解:(Ⅰ)曲线的参数方程为:,所以曲线的普通方程为:,.又由,,所以曲线的极坐标方程为:,,直线的极坐标方程为:.……………(5分)(Ⅱ)如图10,由题意知:,由(Ⅰ)知,,,,图10,图10所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度卫生间施工承包协议
- 2024年外汇贷款操作指南协议细则版
- 2024年小区物业管理与服务协议样本版B版
- 2024年二手车交易合作协议模板版
- 2024专项前期物业管理服务协议版
- 2024年厂房租赁权转移协议范本版
- 2024年国际贸易信用证融资担保合同版B版
- 2024年土方工程建设项目合作合同版B版
- 2024年度园林养护与施工综合协议样本版B版
- 2024年兼职人员法律责任豁免合同范本版B版
- 备战2025年中考语文文言文专项训练《答谢中书书》对比阅读(含答案)
- 《身心压力管理》课件
- 2024年二十届三中全会知识测试题(选择题40道和答案)
- 《中国溃疡性结肠炎诊治指南(2023年)》解读
- 《正确评估肾功能》课件
- 《大数据金融》教学大纲(第六学期)附课程考核标准
- 海船船员培训场地设施设备标准
- 煤矿井下工程瓦斯管路安装施工组织设计
- 叩背排痰操作流程及评分标准
- 质量体系调查表模板.doc
- 中 国 作 家 协 会 入 会 申 请 表
评论
0/150
提交评论