上海市上海中学2025届高二数学第一学期期末检测试题含解析_第1页
上海市上海中学2025届高二数学第一学期期末检测试题含解析_第2页
上海市上海中学2025届高二数学第一学期期末检测试题含解析_第3页
上海市上海中学2025届高二数学第一学期期末检测试题含解析_第4页
上海市上海中学2025届高二数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市上海中学2025届高二数学第一学期期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知f(x)是定义在R上的函数,且f(2)=2,,则f(x)>x的解集是()A. B.C. D.2.如图,某铁路客运部门设计的从甲地到乙地旅客托运行李的费用c(元)与行李质量w(kg)之间的流程图.已知旅客小李和小张托运行李的质量分别为30kg,60kg,且他们托运的行李各自计费,则这两人托运行李的费用之和为()A.28元 B.33元C.38元 D.48元3.直线与圆相交与A,B两点,则AB的长等于()A3 B.4C.6 D.14.已知四棱锥,底面为平行四边形,分别为,上的点,,设,则向量用为基底表示为()A. B.C. D.5.如图,在直三棱柱中,,,D为AB的中点,点E在线段上,点F在线段上,则线段EF长的最小值为()A B.C.1 D.6.抛物线的焦点到准线的距离为()A. B.C. D.7.在棱长为2的正方体中,是棱上一动点,点是面的中心,则的值为()A.4 B.C.2 D.不确定8.已知两直线与,则与间的距离为()A. B.C. D.9.设点P是双曲线,与圆在第一象限的交点,、分别是双曲线的左、右焦点,且,则此双曲线的离心率为()A. B.C. D.310.已知抛物线上的点到其准线的距离为,则()A. B.C. D.11.已知x,y是实数,且,则的最大值是()A. B.C. D.12.设是公差的等差数列,如果,那么()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设双曲线(0<a<b)的半焦距为c,直线l过(a,0),(0,b)两点,且原点到直线l的距离为c,求双曲线的离心率14.椭圆的左焦点为,M为椭圆上的一点,N是的中点,O为原点,若,则______15.方程表示双曲线,则实数k的取值范围是___________.16.设双曲线C:的焦点为,点为上一点,,则为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)求满足下列条件的双曲线的标准方程(1)焦点在x轴上,实轴长为4,实半轴长是虚半轴长的2倍;(2)焦点在y轴上,渐近线方程为,焦距长为18.(12分)如图,在四棱锥P—ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⏊PD,E,F分别为AD,PB的中点.求证:(1)EF//平面PCD;(2)平面PAB⏊平面PCD19.(12分)已知点是圆上任意一点,是圆内一点,线段的垂直平分线与半径相交于点(1)当点在圆上运动时,求点的轨迹的方程;(2)设不经过坐标原点,且斜率为的直线与曲线相交于、两点,记、的斜率分别是、,以、为直径的圆的面积分别为、当、都存在且不为时,试探究是否为定值?若是,求出此定值;若不是,请说明理由20.(12分)甲乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束,设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响(1)求甲乙各投球一次,比赛结束的概率;(2)求甲获胜的概率21.(12分)已知函数(1)求的图象在点处的切线方程;(2)求在上的最大值与最小值22.(10分)已知椭圆的离心率,过椭圆C的焦点且垂直于x轴的直线截椭圆所得到的线段的长度为1(1)求椭圆C的方程;(2)直线交椭圆C于A、B两点,若y轴上存在点P,使得是以AB为斜边的等腰直角三角形,求的面积的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】构造,结合已知有在R上递增且,原不等式等价于,利用单调性求解集.【详解】令,由题设知:,即在R上递增,又,所以f(x)>x等价于,即.故选:D2、D【解析】根据程序框图分别计算小李和小张托运行李的费用,再求和得出答案.【详解】由程序框图可知,当时,元;当时,元,所以这两人托运行李的费用之和为元.故选:D3、C【解析】根据弦长公式即可求出【详解】因为圆心到直线的距离为,所以AB的长等于故选:C4、D【解析】通过寻找封闭的三角形,将相关向量一步步用基底表示即可.【详解】.故选:D5、B【解析】根据给定条件建立空间直角坐标系,令,用表示出点E,F坐标,再由两点间距离公式计算作答.【详解】依题意,两两垂直,建立如图所示的空间直角坐标系,则,,设,则,设,有,线段EF长最短,必满足,则有,解得,即,因此,,当且仅当时取“=”,所以线段EF长的最小值为.故选:B6、B【解析】根据抛物线的几何性质可得选项.【详解】由得,所以,所以抛物线的焦点到准线的距离为1,故选:B.7、A【解析】画出图形,建立空间直角坐标系,用向量法求解即可【详解】如图,以为原点建立如图所示的空间直角坐标系,因为正方体棱长为2,点是面的中心,是棱上一动点,所以,,,故选:A8、B【解析】把直线的方程化简,再利用平行线间距离公式直接计算得解.【详解】直线的方程化为:,显然,,所以与间的距离为.故选:B9、C【解析】根据几何关系得到是直角三角形,然后由双曲线的定义及勾股定理可求解.【详解】点到原点的距离为,又因为在中,,所以是直角三角形,即.由双曲线定义知,又因为,所以.在中,由勾股定理得,化简得,所以.故选:C.10、C【解析】首先根据抛物线的标准方程的形式,确定的值,再根据焦半径公式求解.【详解】,,因为点到的准线的距离为,所以,得故选:C11、D【解析】将方程化为圆的标准方程,则的几何意义是圆上一点与点连线的斜率,进而根据直线与圆相切求得答案.【详解】方程可化为,表示以为圆心,为半径的圆,的几何意义是圆上一点与点A连线的斜率,设,即,当此直线与圆相切时,斜率最大或最小,当切线位于切线AB时斜率最大.此时,,,所以的最大值为.故选:D12、D【解析】由已知可得,即可得解.【详解】由已知可得.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、e=2.【解析】先求出直线的方程,利用原点到直线的距离为,,求出的值,进而根据求出离心率【详解】由l过两点(a,0),(0,b),得l的方程为bx+ay-ab=0.由原点到l的距离为c,得=c.将b=代入平方后整理,得162-16·+3=0.解关于的一元二次方程得=或.∵e=,∴e=或e=2.又0<a<b,故e===>.∴应舍去e=.故所求离心率e=2.【点睛】本题考查双曲线性质,考查求双曲线的离心率常用的方法即构造出关于的等式,属于中档题14、4【解析】根据三角形的中位线定理,结合椭圆的定义即可求得答案.【详解】椭圆的左焦点为,如图,设右焦点为,则,由N是的中点,O为得中点,,故,又,所以,故答案为:415、【解析】由题可得,即求.【详解】∵方程表示双曲线,∴,∴.故答案为:.16、14【解析】利用双曲线的定义求解即可【详解】由,得,则,因为点为上一点,所以,因为,所以,解得或(舍去),故答案为:14三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)(2)直接由条件解出即可得到双曲线方程.【小问1详解】由题意有,解得:,则双曲线的标准方程为:【小问2详解】由题意有,解得:,则双曲线的标准方程为:18、(1)见解析;(2)见解析【解析】(1)取BC中点G,连结EG,FG,推导出,,从而平面平面,由此能得出结论;(2)推导出,从而平面PAD,即得,结合得出平面PCD,由此能证明结论成立.【详解】(1)取BC中点G,连结EG,FG,∵E,F分别是AD,PB的中点,∴,,∴面,面,∵,∴平面平面,∵平面,∴平面.(2)因为底面ABCD为矩形,所以,又因为平面平面ABCD,平面平面,平面ABCD,所以平面PAD因为平面PAD,所以.又因为,,所以平面PCD因为平面PAB,所以平面平面PCD【点睛】本题考查线线垂直、线面平行、面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19、(1);(2)是定值,.【解析】(1)由条件可得点轨迹满足椭圆定义,设出椭圆方程,由,的值可得的值,从而求得轨迹方程;(2)设出直线的方程,结合韦达定理,分别求得为定值,也为定值,从而可得是定值【小问1详解】由题意知,,根据椭圆的定义知点的轨迹是以,为焦点的椭圆,设椭圆的方程为,则,,曲线的方程为;【小问2详解】由题意知直线的方程为且m≠0),设直线与椭圆的交点为,,,,由得,,,,,,,,,,是定值,为.20、(1)(2)【解析】(1)设事件“甲在第次投篮投中”,设事件“乙在第次投篮投中”,记“甲乙各投球一次,比赛结束”为事件,则,利用独立事件和互斥事件的概率公式,即得解(2)记“甲获胜”为事件,由题意,根据概率的加法公式和独立事件的概率公式,即得解【小问1详解】设事件“甲在第次投篮投中”,其中设事件“乙在第次投篮投中”,其中则,,其中记“甲乙各投球一次,比赛结束”为事件,,事件与事件相互独立根据事件独立性定义得:甲乙各投球一次,比赛结束的概率为【小问2详解】记“甲获胜”为事件,事件、事件、事件彼此互斥根据概率加法公式和事件独立性定义得:甲获胜的概率为21、(1);(2)最大值与最小值分别为与【解析】(1)根据导数的几何意义求出切线的斜率即可求出结果;(2)利用导数研究函数的单调性,进而结合函数的单调性即可求出最值.【详解】(1)因为,所以所以所以的图象在点处的切线方程为,即(2)由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论