黑龙江省鹤岗市一中2025届数学高二上期末监测试题含解析_第1页
黑龙江省鹤岗市一中2025届数学高二上期末监测试题含解析_第2页
黑龙江省鹤岗市一中2025届数学高二上期末监测试题含解析_第3页
黑龙江省鹤岗市一中2025届数学高二上期末监测试题含解析_第4页
黑龙江省鹤岗市一中2025届数学高二上期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省鹤岗市一中2025届数学高二上期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某人忘了电脑屏保密码的后两位,但记得最后一位是1,3,5,7,9中的一个数字,倒数第二位是G,O,D中的一个字母,若他尝试输入密码,则一次输入就解开屏保的概率是()A. B.C. D.2.在中,a,b,c分别为角A,B,C的对边,已知,,的面积为,则()A. B.C. D.3.已知是数列的前项和,,则数列是()A.公比为3的等比数列 B.公差为3的等差数列C.公比为的等比数列 D.既非等差数列,也非等比数列4.下列结论中正确的有()A.若,则 B.若,则C.若,则 D.若,则5.在中,角A,B,C所对的边分别为a,b,c,若,,的面积为10,则的值为()A. B.C. D.6.已知公差为的等差数列满足,则()A B.C. D.7.已知双曲线C:-=1(a>b>0)的左焦点为F1,若过原点倾斜角为的直线与双曲线C左右两支交于M、N两点,且MF1NF1,则双曲线C的离心率是()A.2 B.C. D.8.若关于x的不等式的解集为,则关于x的不等式的解集是()A. B.,或C.,或 D.,或,或9.函数在的最大值是()A. B.C. D.10.圆关于直线l:对称的圆的方程为()A. B.C. D.11.已知,数列,,,与,,,,都是等差数列,则的值是()A. B.C. D.12.已知四面体,所有棱长均为2,点E,F分别为棱AB,CD的中点,则()A.1 B.2C.-1 D.-2二、填空题:本题共4小题,每小题5分,共20分。13.已知随机变量X服从正态分布,若,则______14.已知三个数2,,6成等比数列,则实数______15.已知数列的前项和为,则__________.16.已知向量,,并且、共线且方向相同,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,,双曲线C上除顶点外任一点满足直线RM与QM的斜率之积为4.(1)求C方程;(2)若直线l过C上的一点P,且与C的渐近线相交于A,B两点,点A,B分别位于第一、第二象限,,求的最小值.18.(12分)已知椭圆的焦距为4,点在G上.(1)求椭圆G方程;(2)过椭圆G右焦点的直线l与椭圆G交于M,N两点,O为坐标原点,若,求直线l的方程.19.(12分)在所有棱长均为2的三棱柱ABC-A1B1C1中,∠B1BC=60°,求证:(1)AB1⊥BC;(2)A1C⊥平面AB1C1.20.(12分)已知数列满足,.(1)证明:数列为等差数列.(2)求数列的前项和.21.(12分)已知;.(1)若为真命题,求实数的取值范围;(2)若为假命题,为真命题,求实数的取值范围.22.(10分)已知抛物线y2=8x.(1)求出该抛物线的顶点、焦点、准线、对称轴、变量x的范围;(2)以坐标原点O为顶点,作抛物线的内接等腰三角形OAB,|OA|=|OB|,若焦点F是△OAB的重心,求△OAB的周长

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】应用分步计数法求后两位的可能组合数,即可求一次输入就解开屏保的概率.【详解】由题设,后两位可能情况有,∴一次输入就解开屏保的概率是.故选:C.2、C【解析】利用面积公式,求出,进而求出,利用余弦定理求出,再利用正弦定理求出【详解】由面积公式得:,因为的面积为,所以,求得:因,所以由余弦定理得:所以由正弦定理得:,即,解得:故选:C3、D【解析】由得,然后利用与的关系即可求出【详解】因为,所以所以当时,时,所以故数列既非等差数列,也非等比数列故选:D【点睛】要注意由求要分两步:1.时,2.时.4、D【解析】根据基本初等函数的导数和运算法则分别计算函数的导数,即可判断选项.【详解】A.若,则,故A错误;B.若,则,故B错误;C.若,则,故C错误;D.若,则,故D正确.故选:D5、A【解析】由同角公式求出,根据三角形面积公式求出,根据余弦定理求出,根据正弦定理求出.【详解】因为,所以,因为,的面积为10,所以,故,从而,解得,由正弦定理得:.故选:A.【点睛】本题考查了同角公式,考查了三角形的面积公式,考查了余弦定理,考查了正弦定理,属于基础题.6、C【解析】根据等差数列前n项和,即可得到答案.【详解】∵数列是公差为的等差数列,∴,∴.故选:C7、C【解析】根据双曲线和直线的对称性,结合矩形的性质、双曲线的定义、离心率公式、余弦定理进行求解即可.【详解】设双曲线的右焦点为F2,过原点倾斜角为的直线为,设M、N分别在第三、第一象限,由双曲线和直线的对称性可知:M、N两点关于原点对称,而MF1NF1,因此四边形是矩形,而,所以是等边三角形,故,因此,因为,所以,在等腰三角形中,由余弦定理可知:,由矩形的性质可知:,由双曲线的定义可知:,故选:C【点睛】关键点睛:利用矩形的性质、双曲线的定义是解题的关键.8、D【解析】先利用已知一元二次不等式的解集求得参数,再代入所求不等式,利用分式大于零,则分子分母同号,列不等式计算即得结果.【详解】不等式解集为,即的二根是1和2,利用根和系数的关系可知,故不等式即转化成,即,等价于或者,解得或,或者.故解集为,或,或.故选:D.【点睛】分式不等式的解法:(1)先化简成右边为零的形式(或),等价于一元二次不等式(或)再求解即可;(2)先化简成右边为零的形式(或),再利用分子分母同号(或者异号),列不等式组求解即可.9、C【解析】利用函数单调性求解.【详解】解:因为函数是单调递增函数,所以函数也是单调递增函数,所以.故选:C10、A【解析】首先求出圆的圆心坐标与半径,再设圆心关于直线对称的点的坐标为,即可得到方程组,求出、,即可得到圆心坐标,从而求出对称圆的方程;【详解】解:圆的圆心为,半径,设圆心关于直线对称的点的坐标为,则,解得,即圆关于直线对称的圆的圆心为,半径,所以对称圆的方程为;故选:A11、A【解析】根据等差数列的通项公式,分别表示出,,整理即可得答案.【详解】数列,,,和,,,,各自都成等差数列,,,,故选:A12、D【解析】在四面体中,取定一组基底向量,表示出,,再借助空间向量数量积计算作答.【详解】四面体所有棱长均为2,则向量不共面,两两夹角都为,则,因点E,F分别为棱AB,CD的中点,则,,,所以.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、##25【解析】根据正态分布曲线的对称性即可求得结果.【详解】,,又,,.故答案为:.14、【解析】由题意可得,从而可求出的值【详解】因为三个数2,,6成等比数列,所以,解得故答案为:15、【解析】根据题意求得,得到,利用等差数列的求和公式,求得,结合裂项法求和法,即可求解.【详解】由,可得,即,因为,所以,又因为,所以,可得,所以,所以.故答案为:.16、4【解析】根据空间向量共线基本定理,可设.由坐标运算求得的值,进而求得.即可求得的值.【详解】根据空间向量共线基本定理,可设由向量的坐标运算可得解方程可得所以.故答案为:【点睛】本题考查了空间向量共线基本定理的应用,根据向量的共线定理求参数,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)1【解析】(1)由题意得,化简可得答案,(2)求出渐近线方程,设点,,,,,由可得,代入双曲线方程化简可得,然后表示的坐标,再进行数量积运算,化简后利用基本不等式可得答案【小问1详解】由题意得,即,整理得,因为双曲线的顶点坐标满足上式,所以C的方程为.【小问2详解】由(1)可知,曲线C的渐近线方程为,设点,,,,,由,得,整理得,①,把①代入,整理得②,因为,,所以.由,得,则,当且仅当时等号成立,所以的最小值是1.18、(1);(2).【解析】(1)根据已知求出即得椭圆的方程;(2)设l的方程为,,,联立直线和椭圆的方程得到韦达定理,根据得到,即得直线l的方程.【小问1详解】解:椭圆的焦距是4,所以焦点坐标是,.因为点在G上,所以,所以,.所以椭圆G的方程是.【小问2详解】解:显然直线l不垂直于x轴,可设l的方程为,,,将直线l的方程代入椭圆G的方程,得,则,.因为,所以,则,即,由,得,.所以,解得,即,所以直线l的方程为.19、(1)证明见解析;(2)证明见解析.【解析】(1)通过计算·=0来证得AB1⊥BC.(2)通过证明A1C⊥AC1、A1C⊥AC1来证得A1C⊥平面AB1C1.【详解】证明:(1)易知<>=120°,=+,则·=(+)·=·+·=2×2×+2×2×=0.所以AB1⊥BC.(2)易知四边形AA1C1C为菱形,所以A1C⊥AC1.因为·=(-)·(-)=(-)·(--)=·-·-·-·+·+·=·-·-·+·=2×2×-4-2×2×+4=0,所以AB1⊥A1C,又AC1∩AB1=A,所以A1C⊥平面AB1C1.20、(1)证明见解析(2)【解析】(1)由结合等差数列的定义证明即可;(2)由结合错位相减法得出前项和.【小问1详解】在两边同时除以,得:,,故数列是以1为首项,1为公差的等差数列;【小问2详解】由(1)得:,,①②①②得:所以.21、(1);(2).【解析】解不等式求得为真、为真分别对应的解集;(1)由为真可得全真,两解集取交集可得结果;(2)由和的真假性可得一真一假,则分为真假和假真两种情况求得解集.【小问1详解】若为真,则,即,即,所以或,若为真,则,所以,因为为真命题,所以均为真命题.所以实数的取值范围是.【小问2详解】若为假命题,为真命题,则一真一假,若真假,则,解得或,若假真,则,解得,综上所述,实数的取值范围是.22、(1)见解析;(2)2+4.【解析】(1)由抛物线的简单几何性质易得结果;(2)由|OA|=|OB|可知AB⊥x轴,又焦点F是△OAB的重心,则|OF|=|OM|=2.设A(3,m),代入y2=8x即可得到△OAB的周长【详解】(1)抛物线y2=8x的顶点、焦点、准线、对称轴、变量x的范围分别为(0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论