版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西梧州市2025届高二数学第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.我国新冠肺炎疫情防控进入常态化,各地有序进行疫苗接种工作,下面是我国甲、乙两地连续11天的疫苗接种指数折线图,根据该折线图,下列说法不正确的是()A.这11天甲地指数和乙地指数均有增有减B.第3天至第11天,甲地指数和乙地指数都超过80%C.在这11天期间,乙地指数的增量大于甲地指数的增量D.第9天至第11天,乙地指数的增量大于甲地指数的增量2.已知数列中,,,是的前n项和,则()A. B.C. D.3.等比数列,,,成公差不为0的等差数列,,则数列的前10项和()A. B.C. D.4.已知双曲线左右焦点为,过的直线与双曲线的右支交于,两点,且,若线段的中垂线过点,则双曲线的离心率为()A.3 B.2C. D.5.江西省重点中学协作体于2020年进行了一次校际数学竞赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在之间,其得分的频率分布直方图如图,则下列结论错误的是()A.得分在之间的共有40人B.从这100名参赛者中随机选取1人,其得分在的概率为0.5C.这100名参赛者得分的中位数为65D.可求得6.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面是铅垂面,下宽,上宽,深,平面BDEC是水平面,末端宽,无深,长(直线到的距离),则该羡除的体积为()A. B.C. D.7.函数y=的最大值为Ae-1 B.eC.e2 D.8.当实数,m变化时,的最大值是()A.3 B.4C.5 D.69.已知双曲线的左焦点为,,为双曲线的左、右顶点,渐近线上的一点满足,且,则双曲线的离心率为()A. B.C. D.10.已知双曲线的一条渐近线方程为,且与椭圆有公共焦点.则C的方程为()A. B.C. D.11.已知F(3,0)是椭圆的一个焦点,过F且垂直x轴的弦长为,则该椭圆的方程为()A.+=1 B.+=1C.+=1 D.+=112.定义在R上的偶函数在上单调递增,且,则满足的x的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知单位空间向量,,满足,.若空间向量满足,且对于任意实数,的最小值是2,则的最小值是___________.14.若双曲线的渐近线方程为,则该双曲线的离心率为___________;若,则双曲线的右焦点到渐近线的距离为__________.15.若函数在处有极值,则的值为___________.16.牛顿迭代法又称牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数集上近似求解方程根的一种方法.具体步骤如下:设r是函数y=f(x)的一个零点,任意选取x0作为r的初始近似值,作曲线y=f(x)在点(x0,f(x0))处的切线l1,设l1与x轴交点的横坐标为x1,并称x1为r的1次近似值;作曲线y=f(x)在点(x1,f(x1))处的切线l2,设l2与x轴交点的横坐标为x2,并称x2为r的2次近似值.一般的,作曲线y=f(x)在点(xn,f(xn))(n∈N)处的切线ln+1,记ln+1与x轴交点的横坐标为xn+1,并称xn+1为r的n+1次近似值.设f(x)=x3+x-1的零点为r,取x0=0,则r的2次近似值为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足且(1)求证:数列为等差数列,并求数列的通项公式;(2)设,求数列的前n项和为.18.(12分)已知函数(1)解关于的不等式;(2)若不等式在上有解,求实数的取值范围19.(12分)平行六面体,(1)若,,,,,,求长;(2)若以顶点A为端点的三条棱长均为2,且它们彼此的夹角都是60°,则AC与所成角的余弦值20.(12分)如图,在四棱锥中,底面,底面是边长为2的正方形,,F,G分别是,的中点(1)求证:平面;(2)求平面与平面的夹角的大小21.(12分)已知等差数列满足,.(1)求数列的通项公式;(2)设,求数列的前n项和.22.(10分)已知函数(1)讨论函数的单调性;(2)若对任意的,都有成立,求的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由折线图逐项分析得到答案.【详解】对于选项A,从折线图中可以直接观察出甲地和乙地的指数有增有减,故选项A正确;对于选项B,从第3天至第11天,甲地指数和乙地指数都超过80%,故选项B正确;对于选项C,从折线图上可以看出这11天甲的增量大于乙的增量,故选项C错误;对于选项D,从折线图上可以看出第9天至第11天,乙地指数的增量大于甲地指数的增量,故D正确;故选:C.2、D【解析】由,得到为递增数列,又由,得到,化简,即可求解.【详解】解:由,得,又,所以,所以,即,所以数列为递增数列,所以,得,即,又由是的前项和,则.故选:D.【点睛】关键点睛:本题考查数列求和问题,关键在于由已知条件得出,运用裂项相消求和法.3、C【解析】先设等比数列的公比为,结合条件可知,由等差中项可知,利用等比数列的通项公式进行化简求出,最后利用分组求和法,以及等比数列、等差数列的求和公式,即可求出数列的前10项和.【详解】设等比数列的公比为,,,成公差不为0的等差数列,则,,都不相等,,且,,,,即,解得:或(舍去),,所以数列的前10项和:.故选:C.4、C【解析】由双曲线的定义得出中各线段长(用表示),然后通过余弦定理得出的关系式,变形后可得离心率【详解】由题意又则有:可得:,,中,中.可得:解得:则有:故选:C5、C【解析】根据给定的频率分布直方图,结合直方图的性质,逐项计算,即可求解.【详解】由频率分布直方图,可得A中,得分在之间共有人,所以A正确;B中,从100名参赛者中随机选取1人,其得分在中的概率为,所以B正确;D中,由频率分布直方图的性质,可得,解得,所以D正确.C中,前2个小矩形面积之和为0.4,前3个小矩形面积之和为0.7,所以中位数在[60,70],这100名参赛者得分的中位数为,所以C不正确;故选:C.6、C【解析】在,上分别取点,,使得,连接,,,把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算【详解】如图,在,上分别取点,,使得,连接,,,则三棱柱是斜三棱柱,该羡除的体积三棱柱四棱锥.故选:C【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力7、A【解析】,所以函数在上递增,在上递减,所以函数的最大值为时,y==故选A点睛:研究函数最值主要根据导数研究函数的单调性,找到最值,分式求导公式要记熟8、D【解析】根据点到直线的距离公式可知可以表示单位圆上点到直线的距离,利用圆的性质结合图形即得.【详解】由题可知,可以表示单位圆上点到直线的距离,设,因直线,即表示恒过定点,根据圆的性质可得.故选:D.9、C【解析】由双曲线的渐近线方程和两点的距离公式,求得点的坐标和,在中,利用余弦定理,求得的关系式,再由离心率公式,计算即可求解.【详解】由题意,双曲线,可得,设在渐近线上,且点在第一象限内,由,解得,即点,所以,在中,由余弦定理可得,可得,即,所以双曲线离心率为.故选:C.【点睛】求解椭圆或双曲线的离心率的三种方法:1、定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;2、齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.10、B【解析】根据已知和渐近线方程可得,双曲线焦距,结合的关系,即可求出结论.【详解】因为双曲线的一条渐近线方程为,则①.又因为椭圆与双曲线有公共焦点,双曲线的焦距,即c=3,则a2+b2=c2=9②.由①②解得a=2,b=,则双曲线C的方程为.故选:B.11、C【解析】根据已知条件求得,由此求得椭圆的方程.【详解】依题意,所以椭圆方程为.故选:C12、B【解析】,再根据函数的奇偶性和单调性可得或,解之即可得解.【详解】解:,由题意可得或即或,解得或故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】以,方向为轴,垂直于,方向为轴建立空间直角坐标系,根据条件求得坐标,由二次函数求最值即可求得最小值.【详解】以,方向为轴,垂直于,方向为轴建立空间直角坐标系,则,由可设,由是单位空间向量可得,由可设,,当,的最小值是2,所以,取,,,当时,最小值为.故答案为:.14、①.②.3【解析】由渐近线方程知,结合双曲线参数关系及离心率的定义求双曲线的离心率,由已知可得右焦点为,应用点线距离公式求距离.【详解】由题设,,则,当时,,则双曲线为,故右焦点为,所以右焦点到渐近线的距离为.故答案为:,3.15、2或6【解析】由解析式得到导函数,结合是函数极值点,即可求的值.【详解】由,得,因为函数在处有极值,所以,即,解得2或6.经检验,2或6满足题意.故答案为:2或6.16、##【解析】利用导数的几何意义根据r的2次近似值的定义求解即可【详解】由,得,取,,所以过点作曲线的切线的斜率为1,所以直线的方程为,其与轴交点的横坐标为1,即,因为,所以过点作曲线的切线的斜率为4,所以直线的方程为,其与轴交点的横坐标为,即,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,;(2).【解析】(1)对递推公式进行变形,结合等差数列的定义进行求解即可;(2)运用裂项相消法进行求解即可.【小问1详解】因为,且,所以即,所以数列是公差为2的等差数列.又,所以即;【小问2详解】由(1)得,所以.故.18、(1)当时,或;当时,;当时,或(2)【解析】(1)由题意得对的值进行分类讨论可得不等式的解集;(2)将条件转化为,,再利用基本不等式求最值可得的取值范围;【小问1详解】,即,所以,所以,①当时不等式的解为或,②当时不等式的解为,③当时不等式的解为或,综上:原不等式的解集为当时或,当时,当时或【小问2详解】不等式在上有解,即在上有解,所以在上有解,所以,因为,所以,当且仅当,即时取等号,所以.19、(1);(2).【解析】(1)由,可得,再利用数量积运算性质即可得出;(2)以为一组基底,设与所成的角为,由求解.【小问1详解】,,,,∴,;【小问2详解】∵,,∴,∵,∴,∵=8,∴,设与所成的角为,则.20、(1)证明见解析(2)【解析】(1)取中点连接,连接,证得四边形为平行四边形,,再证面,即可得到证明结果;(2)建立空间坐标系,求面和面的法向量,即可得到两个面的二面角的余弦值,进而得到二面角大小.【小问1详解】如上图,取中点连接,连接,均为线段中点,且,又G是的中点,且且四边形为平行四边形为等腰直角三角形,为斜边中点,面,面面又面.【小问2详解】建立如图坐标系,设面的法向量为设面的法向量为两个法向量的夹角余弦值为:,由图知两个面的二面角为钝角,故夹角为.21、(1);(2).【解析】(1)将条件化为基本量并解出,进而求得答案;(2)通过裂项法即可求出答案.【小问1详解】由,.得:解得:故.【小问2详解】当时,.所以时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度影视制作发行合同协议书2篇
- 2024年度国际学校搬迁及设置合同2篇
- 2024年度二手货车买卖合同模板8篇
- 2024年度双方合作开发新药合同3篇
- 2024年度二手住宅垫资购买合同2篇
- 2024年度建筑工程合同:高层写字楼设计与施工
- 2024年度特许经营合同范本(综合版)2篇
- 管道安装施工合同
- 二零二四年度土地使用权转让合同:某地产公司与某开发商就土地使用权的转让合同2篇
- 2024年度字节跳动科技公司内容创作合同3篇
- 国家开放大学专科《法理学》(第三版教材)形成性考核试题及答案
- 洗浴中心传染病病例防控措施
- 施氏十二字养生功防治颈椎病教程文件
- 子宫内膜癌-医师教学查房
- 斯拉夫送行曲混声合唱谱
- (正式版)SHT 3158-2024 石油化工管壳式余热锅炉
- 加油站百日攻坚行动实施方案
- (2024年)农作物病虫害绿色防控技术课件
- 产科安全警示教育
- Altium-Designer-19原理图与PCB设计完整全套教案课件教学电子课件
- 《职业安全健康讲座》课件
评论
0/150
提交评论