版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省曲靖市麒麟区五中2025届高二数学第一学期期末教学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是抛物线的焦点,是抛物线的准线,点,连接交抛物线于点,,则的面积为()A.4 B.9C. D.2.已知函数的定义域为,若,则()A. B.C. D.3.已知椭圆C:的左、右焦点分别为F1,F2,过点F1作直线l交椭圆C于M,N两点,则的周长为()A.3 B.4C.6 D.84.球O为三棱锥的外接球,和都是边长为的正三角形,平面PBC平面ABC,则球的表面积为()A. B.C. D.5.在区间内随机地取出两个数,则两数之和小于的概率是()A. B.C. D.6.设等比数列的前项和为,若,,则()A.66 B.65C.64 D.637.若数列对任意满足,下面选项中关于数列的说法正确的是()A.一定是等差数列B.一定是等比数列C.可以既是等差数列又是等比数列D.可以既不是等差数列又不是等比数列8.设双曲线:的左,右焦点分别为,,过的直线与双曲线的右支交于A,B两点,若,则双曲线的离心率为()A.4 B.2C. D.9.已知椭圆的左顶点为,上顶点为,右焦点为,若,则椭圆的离心率的取值范围是()A. B.C. D.10.已知为原点,点,以为直径的圆的方程为()A. B.C. D.11.金刚石的成分为纯碳,是自然界中存在的最坚硬物质,它的结构是由8个等边三角形组成的正八面体.若某金刚石的棱长为2,则它外接球的体积为()A. B.C. D.12.已知,是空间中的任意两个非零向量,则下列各式中一定成立的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若双曲线的渐近线为,则其离心率的值为_______.14.若,若,则______15.一个质地均匀的正四面体,其四个面涂有不同的颜色,抛掷这个正四面体一次,观察它与地面接触的颜色得到样本空间{红,黄,蓝,绿},设事件{红,黄},事件{红,蓝},事件{黄,绿},则下列判断:①E与F是互斥事件;②E与F是独立事件;③F与G是对立事件;④F与G是独立事件.其中正确判断的序号是______(请写出所有正确判断的序号)16.已知为抛物线上任意一点,为抛物线的焦点,为平面内一定点,则的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,在直四棱柱中,底面ABCD是菱形,点E,F分别在棱,上,且,(1)证明:点在平面BEF内;(2)若,,,求直线与平面BEF所成角的正弦值18.(12分)已知椭圆的短轴长是2,且离心率为(1)求椭圆E的方程;(2)已知,若直线与椭圆E相交于A,B两点,线段AB的中点为M,是否存在常数,使恒成立,并说明理由19.(12分)如图,在四棱锥中,底面是正方形,侧面底面,为侧棱上一点(1)求证:;(2)若为中点,平面与侧棱于点,且,求四棱锥的体积20.(12分)已知三个条件①圆心在直线上;②圆的半径为2;③圆过点在这三个条件中任选一个,补充在下面的问题中,并作答(注:如果选择多个条件分别解答,按第一个解答计分)(1)已知圆过点且圆心在轴上,且满足条件________,求圆的方程;(2)在(1)的条件下,直线与圆交于、两点,求弦长的最小值及相应的值21.(12分)已知椭圆与椭圆有共同的焦点,且椭圆经过点.(1)求椭圆的标准方程;(2)设为椭圆的左焦点,为椭圆上任意一点,为坐标原点,求的最小值.22.(10分)年世界人工智能大会已于年月在上海徐汇西岸举行,某高校的志愿者服务小组受大会展示项目的启发,会后决定开发一款“猫捉老鼠”的游戏.如图所示,、两个信号源相距米,是的中点,过点的直线与直线的夹角为,机器猫在直线上运动,机器鼠的运动轨迹始终满足:接收到点的信号比接收到点的信号晚秒(注:信号每秒传播米).在时刻时,测得机器鼠距离点为米.(1)以为原点,直线为轴建立平面直角坐标系(如图),求时刻时机器鼠所在位置的坐标;(2)游戏设定:机器鼠在距离直线不超过米的区域运动时,有“被抓”的风险.如果机器鼠保持目前的运动轨迹不变,是否有“被抓”风险?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意求得抛物线的方程为和焦点为,由,得到为的中点,得到,代入抛物线方程,求得,进而求得的面积.【详解】由直线是抛物线的准线,可得,即,所以抛物线的方程为,其焦点为,因为,可得可得三点共线,且为的中点,又因为,,所以,将点代入抛物线,可得,所以的面积为.故选:D.2、D【解析】利用导数的定义可求得的值.【详解】由导数的定义可得.故选:D.3、D【解析】由的周长为,结合椭圆的定义,即可求解.【详解】由题意,椭圆,可得,即,如图所示,根据椭圆的定义,可得的周长为故选:D.4、B【解析】取中点为T,以及的外心为,的外心为,依据平面平面可知为正方形,然后计算外接球半径,最后根据球表面积公式计算.【详解】设中点为T,的外心为,的外心为,如图由和均为边长为的正三角形则和的外接圆半径为,又因为平面PBC平面ABC,所以平面,可知且,过分别作平面、平面的垂线相交于点即为三棱锥的外接球的球心,且四边形是边长为的正方形,所以外接球半径,则球的表面积为,故选:B5、C【解析】利用几何概型的面积型,确定两数之和小于的区域,进而根据面积比求概率.【详解】由题意知:若两个数分别为,则,如上图示,阴影部分即为,∴两数之和小于的概率.故选:C6、B【解析】根据等比数列前项和的片段和性质求解即可.【详解】解:由题知:,,,所以,,成等比数列,即5,15,成等比数列,所以,解得.故选:B.7、D【解析】由已知可得或,结合等差数列和等比数列的定义,可得答案【详解】由,得或,即或,若,则数列是等差数列,则B错误;若,当时,数列是等差数列,当时,数列是等比数列,则A错误数列是等差数列,也可以是等比数列;由,不能得到数列为非0常数列,则不可以既是等差又是等比数列,则C错误;可以既不是等差又不是等比数列,如1,3,5,10,20,,故D正确;故选:D8、B【解析】根据双曲线的定义及,求出,,,,再利用余弦定理计算可得;【详解】解:依题意可知、,又且,所以,,,,则,且,即,即,所以离心率.故选:B9、B【解析】根据题意得到,根据,化简得到,进而得到离心率的不等式,即可求解.【详解】由题意,椭圆的左顶点为,上顶点为,所以,,因为,可得,即,又由,可得,可得,解得,又因为椭圆的离心率,所以,即椭圆的离心率为.故选:B.【点睛】求解椭圆或双曲线离心率的三种方法:1、定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;2、齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.10、A【解析】求圆的圆心和半径,根据圆的标准方程即可求解﹒【详解】由题知圆心为,半径,∴圆方程为﹒故选:A﹒11、A【解析】求得外接球的半径,进而计算出外接球体积.【详解】设,正八面体的棱长为,根据正八面体的性质可知:,所以是外接球的球心,且半径,所以外接球的体积为.故选:A12、C【解析】利用向量数量积的定义及运算性质逐一分析各选项即可得答案.【详解】解:对A:因为,所以,故选项A错误;对B:因为,故选项B错误;对C:因为,故选项C正确;对D:因为,故选项D错误故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用渐近线斜率为和双曲线的关系可构造关于的齐次方程,进而求得结果.【详解】由渐近线方程可知:,即,,,(负值舍掉).故答案为:.【点睛】本题考查根据双曲线渐近线方程求解离心率的问题,关键是利用渐进线的斜率构造关于的齐次方程.14、2【解析】首先利用二项展开式的通项公式,求,再利用赋值法求系数的和以及【详解】展开式的通项为,令,则,即,故,令,得.又,所以故故答案为:15、②③【解析】由对立和互斥事件的定义判断①③;由独立事件的性质判断②④.【详解】{红},则E与F不是互斥事件;且,则F与G是对立事件;,则E与F是独立事件;,,则F与G不是独立事件故答案为:②③16、3【解析】利用抛物线的定义,再结合图形即求.【详解】由题可得抛物线的准线为,设点在准线上的射影为,则根据抛物线的定义可知,∴要求取得最小值,即求取得最小,当三点共线时最小,为.故答案为:3.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)设、、、AC与BD的交点为O,由直四棱柱的性质构建空间直角坐标系,确定、的坐标可得,即可证结论.(2)由题设,求出、、的坐标,进而求得面BEF的法向量,利用空间向量夹角的坐标表示求直线与平面BEF所成角的正弦值【小问1详解】由题意,,设,,,设AC与BD的交点为O,以O为坐标原点,分别以BD,AC所在直线为x,y轴建立如下空间直角坐标系,则,,,,所以,,得,即,因此点在平面BEF内【小问2详解】由(1)及题设,,,,,所以,,设为平面BEF的法向量,则,令,即设直线与平面BEF所成角为,则18、(1);(2)存在,理由见解析.【解析】(1)利用离心率,短轴长求出a,b,即可求得椭圆方程.(2)联立直线与椭圆方程,利用韦达定理计算判定,由M为线段AB中点即可确定存在常数推理作答.【小问1详解】因椭圆的短轴长是2,则,而离心率,解得,所以椭圆方程为.【小问2详解】存在常数,使恒成立,
由消去y并整理得:,设,,则,,又,,,则有,而线段AB的中点为M,于是得,并且有所以存在常数,使恒成立.19、(1)证明见解析(2)【解析】(1)利用面面垂直的性质定理可得出平面,再利用线面垂直的性质可得出;(2)分析可知为的中点,平面,计算出梯形的面积,利用锥体的体积公式可求得四棱锥的体积【小问1详解】证明:因为四边形为正方形,则,因为侧面底面,平面平面,平面,所以平面,又平面,所以.【小问2详解】解:因为,平面,平面,所以,平面,因为平面,平面平面,所以,所以,,则,所以,四边形是直角梯形,又是中点,所以,,所以,由平面,平面,所以,从而,正三角形中,是中点,,即,,所以平面,因为,所以.20、(1)条件选择见解析,圆的方程为(2)的最小值为,相应【解析】(1)选择条件①或②或③,求得圆心和半径,由此求得圆的方程.(2)首先求得直线过定点,根据求得最短弦长以及此时的值.【小问1详解】若选条件①,由题意知,圆心是方程的解,解得,所以,设半径为,则.则圆的方程为:若选条件②,设圆心,由题意知,所以圆心,半径为,所以圆的方程为:若选条件③,设圆心,由题意知,即有,解得,圆心为,且半径为,所以圆的方程为:【小问2详解】由(1)圆的方程为:,圆心为,半径.直线过定点,要使弦长最短,,,,,直线的斜率,也即直线的斜率为,所以.,,所以弦长最小值为21、(1)(2)【解析】(1)设椭圆的方程为,将点的坐标代入椭圆的方程,求出的值,即可得出椭圆的方程;(2)设点,则,且,利用平面向量数量积的坐标运算结合二次函数的基本性质可求得的最小值.【小问1详解】(1)由题可设椭圆的方程为,由椭圆经过点,可得,解得或(舍).所以,椭圆的标准方程为.【小问2详解】解:易知,设点,则,且,,,则,当且仅当时,等号成立,故的最小值为.22、(1);(2)没有.【解析】(1)设机器鼠位置为点,由题意可得,即,可得的轨迹为以、为焦点的双曲线的右支,分析取值,即得解双曲线的方程,由可得P点坐标.(2)转化机器鼠与直线最近的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四人力资源培训与招聘加盟合同正规范本3篇
- 2025年度5G通信网络建设施工合同范本6篇
- 2024蔬菜种植保险采购合同范本2篇
- 2024简单的购房合同范本
- 2025年度彩钢瓦屋顶安全性能评估与整改合同3篇
- 2025年度财务数据保密合规性审查合同范本3篇
- 2025年度离婚案件诉讼策略与执行服务合同3篇
- 二零二五壁画艺术教育合作合同3篇
- 二零二四年度「风力发电设备维修」合同
- 二零二五年版10千伏电力施工合同范本正规范修订版发布6篇
- 广东省佛山市2025届高三高中教学质量检测 (一)化学试题(含答案)
- 《国有控股上市公司高管薪酬的管控研究》
- 餐饮业环境保护管理方案
- 人教版【初中数学】知识点总结-全面+九年级上册数学全册教案
- 食品安全分享
- 矿山机械设备安全管理制度
- 计算机等级考试二级WPS Office高级应用与设计试题及答案指导(2025年)
- 造价框架协议合同范例
- 糖尿病肢端坏疽
- 心衰患者的个案护理
- 医护人员礼仪培训
评论
0/150
提交评论