2025届四川省广安市广安中学高二数学第一学期期末统考模拟试题含解析_第1页
2025届四川省广安市广安中学高二数学第一学期期末统考模拟试题含解析_第2页
2025届四川省广安市广安中学高二数学第一学期期末统考模拟试题含解析_第3页
2025届四川省广安市广安中学高二数学第一学期期末统考模拟试题含解析_第4页
2025届四川省广安市广安中学高二数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届四川省广安市广安中学高二数学第一学期期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆的()A.焦点在x轴上,长轴长为2 B.焦点在y轴上,长轴长为2C.焦点在x轴上,长轴长为 D.焦点在y轴上,长轴长为2.直线y=x+1与圆x2+y2=1的位置关系为A.相切B.相交但直线不过圆心C.直线过圆心D.相离3.抛物线的焦点到直线的距离为,则()A.1 B.2C. D.44.【山东省潍坊市二模】已知双曲线的离心率为,其左焦点为,则双曲线的方程为()A. B.C. D.5.已知椭圆+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点.若AB的中点坐标为(1,-1),则E的方程为A.+=1 B.+=1C.+=1 D.+=16.现有60瓶饮料,编号从1到60,若用系统抽样的方法从中抽取6瓶进行检验,则所抽取的编号可能为()A.3,13,23,33,43,53 B.2,14,26,38,40,52C.5,8,31,36,48,54 D.5,10,15,20,25,307.如图所示,已知三棱锥,点,分别为,的中点,且,,,用,,表示,则等于()A. B.C. D.8.双曲线的左、右焦点分别为、,点P在双曲线右支上,,,则C的离心率为()A. B.2C. D.9.直线的斜率为()A.135° B.45°C.1 D.-110.已知F为椭圆C:=1(a>b>0)右焦点,O为坐标原点,P为椭圆C上一点,若|OP|=|OF|,∠POF=120°,则椭圆C的离心率为()A. B.C.-1 D.-111.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子研究数,他们根据沙粒和石子所排列的形状把数分成许多类,若:三角形数、、、、,正方形数、、、、等等.如图所示为正五边形数,将五边形数按从小到大的顺序排列成数列,则此数列的第4项为()A. B.C. D.12.命题“存在,”的否定是()A.存在, B.存在,C.对任意, D.对任意,二、填空题:本题共4小题,每小题5分,共20分。13.在等差数列中,,那么等于______.14.若圆被直线平分,则值为__________15.设等差数列的前项和为,若,,则______16.已知数列的前项和为,,则___________,___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)【阅读材料1】我们在研究两个变量之间的相关关系时,往往先选取若干个样本点(),(),……,(),将样本点画在平面直角坐标系内,就得到样本的散点图.观察散点图,如果所有样本点都落在某一条直线附近,变量之间就具有线性相关关系,如果所有的样本点都落在某一非线性函数图象附近,变量之间就有非线性相关关系.在统计学中经常选择线性或非线性(函数)回归模型来刻画相关关系,并且可以用适当的方法求出回归模型的方程,还常用相关指数R2来刻画回归的效果,相关指数R2的计算公式为:当R2越大时,回归方程的拟合效果越好;当R2越小时,回归方程的拟合效果越差,R2是常用的选择模型的指标之一,在实际应用中应该尽量选择R2较大的回归模型.【阅读材料2】2021年6月17日9时22分,我国酒泉卫星发射中心用长征二号F遥十二运载火箭,成功将神舟十二号载人飞船送入预定轨道,顺利将聂海胜、刘伯明、汤洪胺3名航天员送入太空,发射取得圆满成功,这标志着中国人首次进入自己的空间站.某公司负责生产的A型材料是神舟十二号的重要零件,该材料应用前景十分广泛,该公司为了将A型材料更好地投入商用,拟对A型材料进行应用改造,根据市场调研与模拟,得到应用改造投入x(亿元)与产品的直接收益y(亿元)的数据统计如下:序号123456789101112x2346810132122232425y1522274048546068.56867.56665当0<x≤13时,建立了与的两个回归模型:模型①:;模型②:;当x>13时,确定y与x满足的线性回归直线方程为.根据以上阅读材料,解答以下问题:(1)根据下列表格中的数据,比较当0<x≤13时模型①,②的相关指数R2的大小,并选择拟合效果更好的模型.回归模型模型①模型②回归方程79.1320.2(2)当应用改造的投入为20亿元时,以回归直线方程为预测依据,计算公司的收益约为多少.附:①若最小二乘法求得回归直线方程为,则;②③,当时,.18.(12分)已知O为坐标原点,点,设动点W到直线的距离为d,且,.(1)记动点W的轨迹为曲线C,求曲线C的方程;(2)若直线l与曲线C交于A,B两点,直线与曲线C交于,两点,直线l与的交点为P(P不在曲线C上),且,设直线l,的斜率分别为k,.求证:为定值.19.(12分)已知某中学高二物化生组合学生的数学与物理的水平测试成绩抽样统计如下表:若抽取了名学生,成绩分为A(优秀),B(良好),C(及格)三个等级,设,分别表示数学成绩与物理成绩,例如:表中物理成绩为A等级的共有(人),数学成绩为B等级且物理成绩为C等级的共有8人,已知与均为A等级的概率是0.07(1)设在该样本中,数学成绩的优秀率是30%,求,的值;(2)已知,,求数学成绩为A等级的人数比C等级的人数多的概率20.(12分)定义:设是空间的一个基底,若向量,则称有序实数组为向量在基底下的坐标.已知是空间的单位正交基底,是空间的另一个基底,若向量在基底下的坐标为(1)求向量在基底下的坐标;(2)求向量在基底下的模21.(12分)已知等差数列满足,,的前项和为.(1)求及;(2)令,求数列的前项和.22.(10分)已知圆,其圆心在直线上.(1)求的值;(2)若过点的直线与相切,求的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】把椭圆方程化为标准方程可判断焦点位置和求出长轴长.【详解】椭圆化为标准方程为,所以,且,所以椭圆焦点在轴上,,长轴长为.故选:B.2、B【解析】求出圆心到直线的距离d,与圆的半径r比较大小即可判断出直线与圆的位置关系,同时判断圆心是否在直线上,即可得到正确答案解:由圆的方程得到圆心坐标(0,0),半径r=1则圆心(0,0)到直线y=x+1的距离d==<r=1,把(0,0)代入直线方程左右两边不相等,得到直线不过圆心所以直线与圆的位置关系是相交但直线不过圆心故选B考点:直线与圆的位置关系3、B【解析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得的值.【详解】抛物线的焦点坐标为,其到直线的距离:,解得:(舍去).故选:B.4、D【解析】分析:根据题设条件,列出方程,求出,,的值,即可求得双曲线得标准方程详解:∵双曲线的离心率为,其左焦点为∴,∴∵∴∴双曲线的标准方程为故选D.点睛:本题考查双曲线的标准方程,双曲线的简单性质的应用,根据题设条件求出,,的值是解决本题的关键.5、D【解析】设、,所以,运用点差法,所以直线的斜率为,设直线方程为,联立直线与椭圆的方程,所以;又因为,解得.【考点定位】本题考查直线与圆锥曲线的关系,考查学生的化归与转化能力.6、A【解析】求得组距,由此确定正确选项.【详解】,即组距为,A选项符合,其它选项不符合.故选:A7、A【解析】连接,先根据已知条件表示出,再根据求得结果.【详解】连接,如下图所示:因为为的中点,所以,又因为为的中点,所以,所以,故选:A.8、C【解析】由,所以为直角三角形,根据双曲线的定义结合勾股定理可得答案.【详解】由,所以为直角三角形.,根据双曲线的定义可得所以,即,即,所以故选:C9、D【解析】由斜截式直接看出直线斜率.【详解】由题意得:直线斜率为-1,故选:D10、D【解析】记椭圆的左焦点为,在中,通过余弦定理得出,,根据椭圆的定义可得,进而可得结果.【详解】记椭圆的左焦点为,在中,可得,在中,可得,故,故,故选:D.11、D【解析】根据前三个五边形数可推断出第四个五边形数.【详解】第一个五边形数为,第二个五边形数为,第三个五边形数为,故第四个五边形数为.故选:D.12、D【解析】特称命题的否定:将存在改任意并否定原结论,即可知正确答案.【详解】由特称命题的否定为全称命题,知:原命题的否定为:对任意,.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、14【解析】根据等差数列的性质得到,求得,再由,即可求解.【详解】因为数列为等差数列,且,根据等差数列的性质,可得,解答,又由.故答案为:14.14、;【解析】求出圆的圆心坐标,代入直线方程求解即可【详解】解:的圆心圆被直线平分,可知直线经过圆的圆心,可得解得;故答案为:1【点睛】本题考查直线与圆的位置关系的应用,属于基础题15、77【解析】依题意利用等差中项求得,进而求得.【详解】依题意可得,则,故故答案为:77.16、①.②.【解析】第一空:由,代入已知条件,即可解得结果;第二空:由与关系可推导出之间的关系,再由递推公式即可求出通项公式.【详解】,可得由,可知时,故时即可化为又故数列是首项为公比为2的等比数列,故数列的通项公式故答案为:①;②三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)模型②拟合效果更好(2)69.1(亿元)【解析】(1)分别求出两个模型的相关指数,在进行比较即可,(2)利用最小二乘法求出回归方程,再求收益即可【小问1详解】对于模型①,因为,故对应的,故对应的相关指数,对于模型②,同理对应的相关指数,故模型②拟合效果更好【小问2详解】当时,后五组的,由最小二乘法可得,所以当时,确定y与x满足的线性回归直线方程为故当投入20亿元时,预测公司的收益约为:(亿元)18、(1)(2)证明见解析【解析】(1)设点,由即所以化简即可得到答案.(2)设,,设直线l的方程为:与(1)中W的轨迹方程联立,得出韦达定理,求出,同理设直线的方程为:,得出,再根据从而可证明结论.【小问1详解】设点,因为,所以,因为,所以所以所以所以所以C的方程为:【小问2详解】设,,设直线l的方程为:,则由得:所以,,所以所以设直线的方程为:,则同理可得因所以即,即,即解得,即所以为定值.19、(1),(2)【解析】(1)根据与均为A等级的概率是0.07,求得值,再根据数学成绩的优秀率是30%求得值,最后利用抽取的总人数求出值即可;(2)根据,,,写出满足条件得基本事件,找出其中的基本事件,利用古典概型的公式求出概率即可.【小问1详解】由题意知,解得,,解得,由已知得,解得.【小问2详解】由,,,可知,则试验的样本空间,共9个样本点其中包含的样本点有共4个,故所求概率20、(1)(2)【解析】(1)根据向量在基底下的坐标为,得出向量在基底下的坐标;(2)根据向量在基底下的坐标直接计算模即可【小问1详解】因为向量在基底下坐标为,则,所以向量在基底下的坐标为.【小问2详解】因为向量在基底下的坐标为,所以向量在基底下的模为.21、(1),;(2).【解析】(1)根据等差数列的通项公式及已知条件,,解方程组可得,,进而可得等差数列的通项公式,再利用等差数列的前项和公式可得;(2)将数列的通项公式代入可得的通项公式,利用错位相减法求和可得结果.【详解】(1)设等差数列的首项为,公差为,由于,,所以,,解得,,所以,;(2)因为,所以,故,,两式相减得,所以.【点睛】本题的核心是考查错位相减求和.一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论