版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省唐山市玉田县高级中学2025届高二上数学期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等差数列中,已知,则()A.4 B.8C.3 D.62.各项均为正数的等比数列的前项和为,若,,则()A. B.C. D.3.随机地向两个标号分别为1与2的格子涂色,涂上红色或绿色,在已知其中一个格子颜色为红色条件下另一个格子颜色也为红色的概率为()A. B.C. D.4.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B.C. D.5.“椭圆的离心率为”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件6.已知f(x)=x3+(a-1)x2+x+1没有极值,则实数a的取值范围是()A.[0,1] B.(-∞,0]∪[1,+∞)C.[0,2] D.(-∞,0]∪[2,+∞)7.已知抛物线的焦点为,点在抛物线上,且,则的横坐标为()A.1 B.C.2 D.38.已知直线和圆,则“”是“直线与圆相切”的().A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件9.在棱长为1的正方体中,点,分别是,的中点,点是棱上的点且满足,则两异面直线,所成角的余弦值是()A. B.C. D.10.瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,这条直线被后人称为三角形的“欧拉线”.若满足,顶点,且其“欧拉线”与圆相切,则:①.圆M上的点到原点的最大距离为②.圆M上存在三个点到直线的距离为③.若点在圆M上,则的最小值是④.若圆M与圆有公共点,则上述结论中正确的有()个A.1 B.2C.3 D.411.椭圆:的左焦点为,椭圆上的点与关于坐标原点对称,则的值是()A.3 B.4C.6 D.812.设函数,则曲线在点处的切线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为_______.14.经过两点的双曲线的标准方程是________15.已知实数,,,满足,,,则的最大值是______16.曲线在点M(π,0)处的切线方程为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线上任意一点到焦点F最短距离为2,(1)求抛物线C的方程;(2)过焦点F的直线,互相垂直,且与C分别交于A,B,M,N四点,求四边形AMBN面积的最小值18.(12分)已知抛物线的焦点在直线上(1)求抛物线的方程(2)设直线经过点,且与抛物线有且只有一个公共点,求直线的方程19.(12分)已知椭圆:经过点,设右焦点F,椭圆上存在点Q,使QF垂直于x轴且.(1)求椭圆的方程;(2)过点的直线与椭圆交于D,G两点.是否存在直线使得以DG为直径的圆过点E(-1,0)?若存在,求出直线的方程,若不存在,说明理由.20.(12分)在棱长为4的正方体中,点分别在线段上,点在线段延长线上,,,连接交线段于点.(1)求证平面;(2)求异面直线所成角的余弦值.21.(12分)已知椭圆:的长轴长为6,离心率为,长轴的左,右顶点分别为A,B(1)求椭圆的方程;(2)已知过点的直线交椭圆于M、N两个不同的点,直线AM,AN分别交轴于点S、T,记,(为坐标原点),当直线的倾斜角为锐角时,求的取值范围22.(10分)在等差数列中,,.(1)求数列的通项公式;(2)求数列的前n项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据等差数列的性质计算出正确答案.【详解】由等差数列的性质可知,得.故选:B2、D【解析】根据等比数列性质可知,,,成等比数列,由等比中项特点可构造方程求得,由等比数列通项公式可求得,进而得到结果.【详解】由等比数列的性质可得:,,,成等比数列,则,即,解得:,,,解得:.故选:D.3、D【解析】根据古典概型的概率公式即可得出答案.【详解】在已知其中一个格子颜色为红色条件下另一个格子颜色有红色与绿色两种情况,其中一个格子颜色为红色条件下另一个格子颜色也为红色的情况有1种,所以在已知其中一个格子颜色为红色条件下另一个格子颜色也为红色的概率为.故选:D.4、A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题5、C【解析】讨论椭圆焦点的位置,根据离心率分别求出参数m,由充分必要性的定义判断条件间的充分、必要关系.【详解】当椭圆的焦点在轴上时,,得;当椭圆的焦点在轴上时,,得故“椭圆的离心率为”是“”的必要不充分条件故选:C.6、C【解析】求导得,再解不等式即得解.【详解】由得,根据题意得,解得故选:C7、C【解析】利用抛物线的定义转化为到准线的距离,即可求得.【详解】抛物线的焦点坐标为,准线方程为,,∴,故选:C.8、B【解析】首先求出直线与圆相切时的取值,再根据充分必要条件的定义判断.【详解】若直线与圆相切,则圆心到直线的距离,则,解得,所以“”是“直线与圆相切”的充分不必要条件.故选:B【点睛】本题考查直线与圆的位置关系,充分必要条件,重点考查计算,理解能力,属于基础题型.9、A【解析】建立空间直角坐标系,写出点、、、和向量的、坐标,运用求异面直线余弦值的公式即可求出.【详解】解:以为原点,分别以,,所在直线为,,轴建立如图所示的空间直角坐标第,则,,,,故,,,故两异面直线,所成角的余弦值是.故选:A.【点睛】本题考查求异面直线所成角的余弦值,属于中档题.10、A【解析】由题意求出的垂直平分线可得△的欧拉线,再由圆心到直线的距离求得,得到圆的方程,求出圆心到原点的距离,加上半径判断A;求出圆心到直线的距离判断B;再由的几何意义,即圆上的点与定点连线的斜率判断C;由两个圆有公共点可得圆心距与两个半径之间的关系,求得的取值范围判断D【详解】由题意,△的欧拉线即的垂直平分线,,,的中点坐标为,,则的垂直平分线方程为,即由“欧拉线”与圆相切,到直线的距离,,则圆的方程为:,圆心到原点的距离为,则圆上的点到原点的最大距离为,故①错误;圆心到直线的距离为,圆上存在三个点到直线的距离为,故②正确;的几何意义:圆上的点与定点连线的斜率,设过与圆相切的直线方程为,即,由,解得,的最小值是,故③错误;的圆心坐标,半径为,圆的的圆心坐标为,半径为,要使圆与圆有公共点,则圆心距的范围为,,,解得,故④错误故选:A11、D【解析】令椭圆C的右焦点,由已知条件可得四边形为平行四边形,再利用椭圆定义计算作答.【详解】令椭圆C的右焦点,依题意,线段与互相平分,于是得四边形为平行四边形,因此,而椭圆:的长半轴长,所以.故选:D12、A【解析】利用导数的几何意义求解即可【详解】由,得,所以切线的斜率为,所以切线方程为,即,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】由求导公式求出导数,再把代入求出切线的斜率,代入点式方程化为一般式即可.【详解】由题意得,∴在点处的切线的斜率是,则在点处的切线方程是,即.【点睛】本题考查导数的几何意义.注意区分“在某点处的切线”与“过某点的切线”,前者“某点”是切点,后者“某点”不一定是切点.14、【解析】设双曲线的标准方程将点坐标代入求参数,即可确定标准方程.【详解】令,则,可得,令,则,无解.故双曲线的标准方程是.故答案为:.15、10【解析】采用数形结合法,将所求问题转化为两点到直线的距离和的倍,结合梯形中位线性质和三角形三边关系可求得答案.【详解】由,,,可知,点在圆上,由,即为等腰直角三角形,结合点到直线距离公式可理解为圆心到直线的距离,变形得,即所求问题可转化为两点到直线的距离和的倍,作于于,中点为,中点为,由梯形中位线性质可得,,作于,于,连接,则,当且仅当与重合,三点共线时,有最大值,由点到直线距离公式可得,由几何性质可得,,此时,故的最大值为.故答案为:10.16、【解析】由题意可得,据此可得切线的斜率,结合切点坐标即可确定切线方程.【详解】由函数的解析式可得:,所求切线的斜率为:,由于切点坐标为,故切线方程为:.【点睛】导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)128【解析】(1)设抛物线上任一点为,由可得答案.(2)由题意可知,的斜率k存在且不为0,设出其方程并与抛物线方程联立,得出韦达定理,从而得出弦长的表达式,同理得出弦长的表达式,进而得出四边形AMBN面积的不等式,从而求出其最小值.【小问1详解】设抛物线上任一点为,则,所以当时,,又∵,∴,即所以抛物线C的方程为【小问2详解】设交抛物线C于点,,交抛物线C于点,由题意可知,的斜率k存在且不为0设的方程为由,得,同理可得,,当且仅当时,即时,等号成立∴四边形AMBN面积的最小值为12818、(1)(2)的方程为、、【解析】(1)求得点的坐标,由此求得,进而求得抛物线的方程.(2)结合图象以及判别式求得直线的方程.【小问1详解】抛物线的焦点在轴上,且开口向上,直线与轴的交点为,则,所以,抛物线的方程为.【小问2详解】当直线的斜率不存在时,直线与抛物线只有一个公共点.那个直线的斜率存在时,设直线的方程为,,,,解得或.所以直线的方程为或.综上所述,的方程为、、.19、(1);(2)存在,或.【解析】(1)根据题意,列出的方程组,求得,则椭圆方程得解;(2)对直线的斜率进行讨论,当斜率存在时,设出直线方程,联立椭圆方程,利用韦达定理,转化题意为,求解即可.小问1详解】由题意,得,设,将代入椭圆方程,得,所以,解得,所以椭圆的方程为.【小问2详解】当斜率不存在时,即时,,为椭圆短轴两端点,则以为直径的圆为,恒过点,满足题意;当斜率存在时,设,,,由得:,,解得:,,若以为直径的圆过点,则,即,又,,,解得:,满足,即,此时直线的方程为综上,存在直线使得以为直径的圆过点,的方程为或20、(1)证明见解析(2)【解析】(1)由线面平行的判定定理证明;(2)建立空间直角坐标系,用空间向量法求异面直线所成的角【小问1详解】证明:且,由三角形相似可得,,,又,,又平面,平面平面;【小问2详解】解:以为坐标原点,分别以为轴建立空间坐标系,如图.则设异面直线所成角为,则21、(1)(2)【解析】(1)根据椭圆的长轴和离心率,可求得,进而得椭圆方程;(2)先判断直线斜率为正,然后设出直线方程,和椭圆方程联立,整理得根与系数的关系,利用直线方程求出点S、T的坐标,再根据确定的表达式,将根与系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度棉纱行业质量标准制定与实施合同4篇
- 2025版年会现场摄影摄像服务合同范本4篇
- 二零二五年度棉花病虫害防治与防治药物供应合同4篇
- 二零二五年度新能源汽车动力电池研发合作合同
- 2025年度农家乐景区旅游咨询与导览服务合同协议
- 二零二五年度美容院美容设备维护保养及备件供应合同4篇
- 二零二五年度美甲店互联网营销与电商平台合作合同4篇
- 二零二五年度南宁市体育场馆设施租赁合同及赛事组织协议3篇
- 2025年度个人二手车居间销售合同示范文本2篇
- 二零二五年帐篷租赁及活动策划服务合同3篇
- 完整版秸秆炭化成型综合利用项目可行性研究报告
- 油气行业人才需求预测-洞察分析
- 《数据采集技术》课件-Scrapy 框架的基本操作
- (2024)河南省公务员考试《行测》真题及答案解析
- 2025年河北省单招语文模拟测试二(原卷版)
- 工作计划 2025年度医院工作计划
- 高一化学《活泼的金属单质-钠》分层练习含答案解析
- DB34∕T 4010-2021 水利工程外观质量评定规程
- 2024年内蒙古中考英语试卷五套合卷附答案
- 2024年电工(高级)证考试题库及答案
- 2024年全国各地中考试题分类汇编:古诗词阅读
评论
0/150
提交评论