版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省孝感市普通高中联考协作体数学高一上期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了节约水资源,某地区对居民用水实行“阶梯水价”制度:将居民家庭全年用水量(取整数)划分为三档,水价分档递增,其标准如下:阶梯居民家庭全年用水量(立方米)水价(元/立方米)其中水费(元/立方米)水资源费(元/立方米)污水处理费(元/立方米)第一阶梯0-180(含)52.071.571.36第二阶梯181-260(含)74.07第三阶梯260以上96.07如该地区某户家庭全年用水量为300立方米,则其应缴纳的全年综合水费(包括水费、水资源费及污水处理费)合计为元.若该地区某户家庭缴纳的全年综合水费合计为1180元,则此户家庭全年用水量为()A.170立方米 B.200立方米C.220立方米 D.236立方米2.已知圆上的一段弧长等于该圆的内接正方形的边长,则这段弧所对的圆周角的弧度数为()A. B.C. D.3.下列说法中,正确的是()A.若,则B.函数与函数是同一个函数C.设点是角终边上的一点,则D.幂函数的图象过点,则4.已知函数,则函数在上单调递增,是恒成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件5.已知函数,对于任意,且,均存在唯一实数,使得,且,若关于的方程有4个不相等的实数根,则的取值范围是A. B.C. D.6.定义域在R上的函数是奇函数且,当时,,则的值为()A. B.C D.7.“,”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8.设函数,有四个实数根,,,,且,则的取值范围是()A. B.C. D.9.已知一个水平放置的平面四边形的直观图是边长为1的正方形,则原图形的周长为()A.6 B.8C. D.10.已知函数若关于的方程有6个根,则的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知对于任意x,y均有,且时,,则是_____(填奇或偶)函数12.定义在R上的奇函数f(x)周期为2,则__________.13.两平行直线与之间的距离______.14.已知,,,则有最大值为__________15.已知,则__________.16.已知的定义域为,那么a的取值范围为_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数()在同一半周期内的图象过点,,,其中为坐标原点,为函数图象的最高点,为函数的图象与轴正半轴的交点,为等腰直角三角形.(1)求的值;(2)将绕点按逆时针方向旋转角(),得到,若点和点都恰好落在曲线()上,求的值.18.已知函数(1)求出该函数最小正周期;(2)当时,的最小值是-2,最大值是,求实数a,b的值19.在①;②函数为偶函数:③0是函数的零点这三个条件中选一个条件补充在下面问题中,并解答下面的问题问题:已知函数,,且______(1)求函数的解析式;(2)判断函数在区间上的单调性,并用定义证明注:如果选择多个条件分别解答,按第一个解答计分20.某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取名按年龄分组:第组,第组,第组,第组,第组,得到的频率分布直方图如图所示.(1)若从第,,组中用分层抽样的方法抽取名志愿者参广场的宣传活动,应从第,,组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在这名志愿者中随机抽取名志愿者介绍宣传经验,求第组志愿者有被抽中的概率.21.已知圆C过,两点,且圆心C在直线上(1)求圆C的方程;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据用户缴纳的金额判定全年用水量少于260,利用第二档的收费方式计算即可.【详解】若该用户全年用水量为260,则应缴纳元,所以该户家庭的全年用水量少于260,设该户家庭全年用水量为x,则应缴纳元,解得.故选:C2、C【解析】求出圆内接正方形边长(用半径表示),然后由弧度制下角的定义可得【详解】设此圆的半径为,则正方形的边长为,设这段弧所对的圆周角的弧度数为,则,解得,故选:C.【点睛】本题考查弧度制下角的定义,即圆心角等于所对弧长除以半径.本题属于简单题3、D【解析】A选项,举出反例;B选项,两函数定义域不同;C选项,利用三角函数定义求解;D选项,待定系数法求出解析式,从而得到答案.【详解】A选项,当时,满足,而,故A错误;B选项,定义域为R,定义域为,两者不是同一个函数,B错误;C选项,,C错误;D选项,设,将代入得:,解得:,所以,D正确.故选:D4、A【解析】根据充分、必要条件的定义证明即可.【详解】因为函数在上单调递增,则,恒成立,即恒成立,,即.所以“”是“”的充分不必要条件.故选:A.5、A【解析】解:由题意可知f(x)在[0,+∞)上单调递增,值域为[m,+∞),∵对于任意s∈R,且s≠0,均存在唯一实数t,使得f(s)=f(t),且s≠t,∴f(x)在(﹣∞,0)上是减函数,值域为(m,+∞),∴a<0,且﹣b+1=m,即b=1﹣m∵|f(x)|=f()有4个不相等的实数根,∴0<f()<﹣m,又m<﹣1,∴0m,即0<(1)m<﹣m,∴﹣4<a<﹣2,∴则a的取值范围是(﹣4,﹣2),故选A点睛:本题中涉及根据函数零点求参数取值,是高考经常涉及的重点问题,(1)利用零点存在的判定定理构建不等式求解;(2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.6、A【解析】根据函数的奇偶性和周期性进行求解即可.【详解】因为,所以函数的周期为,因为函数是奇函数,当时,,所以,故选:A7、A【解析】根据三角函数的诱导公式和特殊角的三角函数,结合充分必要条件的概念即可判断.【详解】,时,,,时,,所以“,”是“”的充分而不必要条件,故选:.8、A【解析】根据分段函数解析式研究的性质,并画出函数图象草图,应用数形结合及题设条件可得、、,进而将目标式转化并令,构造,则只需研究在上的范围即可.【详解】由分段函数知:时且递减;时且递增;时,且递减;时,且递增;∴的图象如下:有四个实数根,,,且,由图知:时有四个实数根,且,又,由对数函数的性质:,可得,∴令,且,由在上单增,可知,所以故选:A9、B【解析】由斜二测画法的规则,把直观图还原为原平面图形,再求原图形的周长【详解】解:由斜二测画法的规则知,与轴平行的线段其长度不变以及与横轴平行的性质不变,正方形的对角线在轴上,可求得其长度为,所以在平面图中其在轴上,且其长度变为原来2倍,是,其原来的图形如图所示;所以原图形的周长是:故选:【点睛】本题考查了平面图形的直观图应用问题,能够快速的在直观图和原图之间进行转化,是解题的关键,属于中档题10、B【解析】作出函数的图象,令,则原方程可化为在上有2个不相等的实根,再数形结合得解.【详解】作出函数的图象如图所示.令,则可化为,要使关于的方程有6个根,数形结合知需方程在上有2个不相等的实根,,不妨设,,则解得,故的取值范围为,故选B【点睛】形如的函数的零点问题与函数图象结合较为紧密,处理问题的基础和关键是作出,的图象.若已知零点个数求参数的范围,通常的做法是令,先估计关于的方程的解的个数,再根据的图象特点,观察直线与图象的交点个数,进而确定参数的范围二、填空题:本大题共6小题,每小题5分,共30分。11、奇函数【解析】赋值,可求得,再赋值即可得到,利用奇偶性的定义可判断奇偶性;【详解】,令,得,,再令,得,是上的奇函数;【点睛】本题考查了赋值法及奇函数的定义12、0【解析】以周期函数和奇函数的性质去求解即可.【详解】因为是R上的奇函数,所以,又周期为2,所以,又,所以,故,则对任意,故故答案为:013、2【解析】根据平行线间距离公式可直接求解.【详解】直线与平行由平行线间距离公式可得故答案为:2【点睛】本题考查了平行线间距离公式的简单应用,属于基础题.14、4【解析】分析:直接利用基本不等式求xy的最大值.详解:因为x+y=4,所以4≥,所以故答案为4.点睛:(1)本题主要考查基本不等式,意在考查学生对该基础知识的掌握水平.(2)利用基本不等式求最值时,一定要注意“一正二定三相等”,三者缺一不可.15、3【解析】由同角三角函数商数关系及已知等式可得,应用诱导公式有,即可求值.【详解】由题设,,可得,∴.故答案为:316、【解析】根据题意可知,的解集为,由即可求出【详解】依题可知,的解集为,所以,解得故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据为等腰直角三角形可求解(2)根据三角函数定义分别得到、的坐标,再代入中可求解【小问1详解】由题意可知周期,所以,,为等腰直角三角形,所以.【小问2详解】由(1)可得,所以,,所以,点,都落在曲线()上,所以可得,,,可得,,由,得,(),所以.18、(1)(2),【解析】(1)根据正弦函数的周期公式即可求出;(2)根据,求出的范围,即可得到函数的最小值及最大值,列出方程组,即可求a,b【小问1详解】由题意可得最小正周期为;【小问2详解】令,∵,∴,∴由正弦函数性质得,,设,故,,由,解得,故,.19、(1)(2)单调递增,证明见解析【解析】(1)若选条件①,根据及指数对数恒等式求出的值,即可求出函数解析式;若选条件②,根据,即可得到,从而求出的值,即可求出函数解析式;若选条件③,直接代入即可得到方程,求出的值,即可求出函数解析式;(2)利用定义法证明函数单调性,按照设元、作差、变形、判断符号、下结论的步骤完成即可;【小问1详解】解:若选条件①.因为,所以,即解得.所以若选条件②.函数的定义域为R.因为为偶函数,所以,,即,,化简得,所以,即.所以若选条件③.由题意知,,即,解得.所以【小问2详解】解:函数在区间上单调递增证明如下:,,且,则因为,,,所以,即又因为,所以,即所以,即所以在区间上单调递增20、(1)分别抽取人,人,人;(2)【解析】(1)频率分布直方图各组频率等于各组矩形的面积,进而算出各组频数,再根据分层抽样总体及各层抽样比例相同求解;(2)列出从名志愿者中随机抽取名志愿者所有的情况,再根据古典概型概率公式求解.【详解】(1)第组的人数为,第组的人数为,第组的人数为,因为第,,组共有名志愿者,所以利用分层抽样的方法在名志愿者中抽取名志愿者,每组抽取的人数分别为:第组:;第组:;第组:.所以应从第,,组中分别抽取人,人,人.(2)设“第组的志愿者有被抽中”为事件.记第组的名志愿者为,,,第组的名志愿者为,,第组的名志愿者为,则从名志愿者中抽取名志愿者有:,,,,,,,,,,,,,,,共有种.其中第组的志愿者被抽中的有种,答:第组的志愿者有被抽中的概率为【点睛】本题考查频率分布直方图,分层抽样和古典概型,注意列举所有情况时不要遗漏.21、(1);(2)或.【解析】(1)设圆C的圆心为,半径为r,结合题意得,解出a、b、r的值,将其值代入圆的方程即可得答案(2)根据题意,分类讨论,斜率存在和斜率不存在两种情况:①当直线l的斜率不存在时,满足题意,②当直线l的斜率存在时,设所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度餐饮连锁经营承包合同
- 2024年度手机应用开发合同
- 二零二四年度货物采购与供应合同
- 茶叶合同范本模板
- 山庄建设合同范本
- 2024安全员知识考试题a4版打印
- 造林用工合同范本
- 单位报账合同范本
- 合同范本 管理平台
- 跨国婚姻合同范本
- 上田敏运动功能评价法详解
- 幼儿园自闭症儿童的干预策略 论文
- 工装模具停用(报废)管理规定
- (51)-雕刻上颌第一磨牙
- 滚动计划法课件完整版
- 《在岁月中远行》读书笔记思维导图PPT模板下载
- 成人高等学历教育毕业生自我总结(通用5篇)
- 国电南自ps6000监控技术说明书
- 中国四大民间故事(完整版)资料
- 人教版语文八年级上册( 部编版)24 《周亚夫军细柳》课件
- 触电急救及防火防雷设备使用操作
评论
0/150
提交评论