版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙东北联盟高一数学第一学期期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,,则的大小关系为()A. B.C. D.2.已知函数为R上的偶函数,若对于时,都有,且当时,,则等于()A.1 B.-1C. D.3.设,则A. B.C. D.4.函数的零点所在的区间是A.(0,1) B.(1,2)C.(2,3) D.(3,4)5.已知函数,若,且当时,则的取值范围是A. B.C. D.6.将函数()的图象向右平移个单位长度后,得到函数的图象,若为偶函数,则()A.5 B.C.4 D.7.已知函数,则()A. B.3C. D.8.古希腊数学家阿波罗尼奥斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数(且)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知,动点满足,则动点轨迹与圆位置关系是()A.外离 B.外切C.相交 D.内切9.下列各选项中的两个函数的图象关于y轴对称的是()A.与 B.与C.与 D.与10.已知是第二象限角,且,则点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题:本大题共6小题,每小题5分,共30分。11.若在幂函数的图象上,则______12.若幂函数的图象经过点,则的值等于_________.13.已知偶函数是区间上单调递增,则满足的取值集合是__________14.漏斗作为中国传统器具而存在于日常生活之中,某漏斗有盖的三视图如图所示,其中俯视图为正方形,则该漏斗的容积为不考虑漏斗的厚度______,若该漏斗存在外接球,则______.15.下列命题中所有正确的序号是______________①函数最小值为4;②函数的定义域是,则函数的定义域为;③若,则的取值范围是;④若(,),则16.空间两点与的距离是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.2022年新冠肺炎仍在世界好多国家肆虐,尽管我国抗疫取得了很大的成绩,疫情也得到了很好的遏制,但由于整个国际环境的影响,时而也会出现一些散发病例,故而抗疫形势依然艰巨.我市某小区为了防止疫情在小区出现,严防外来人员进入小区,切实保障居民正常生活,设置“特殊值班岗”.现有包含甲、乙在内的4名志愿者参与该工作,每人安排一天,每4天一轮.在一轮的“特殊值班岗”安排中,求:(1)甲、乙两人相邻值班的概率;(2)甲或乙被安排在前2天值班的概率18.北京冬奥会计划于2022年2月4日开幕,随着冬奥会的临近,中国冰雪运动也快速发展,民众参与冰雪运动的热情不断高涨盛会的举行,不仅带动冰雪活动,更推动冰雪产业快速发展某冰雪产业器材厂商,生产某种产品的年固定成本为200万元,每生产千件,需另投入成本为(万元),其中与之间的关系为:通过市场分析,当每千件件产品售价为40万元时,该厂年内生产的商品能全部销售完若将产品单价定为400元(1)写出年利润(万元)关于年产量(千件)的函数解析式(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?19.已知集合A={x|},B={x||x-a|<2},其中a>0且a≠1(1)当a=2时,求A∪B及A∩B;(2)若集合C={x|logax<0}且C⊆B,求a的取值范围20.已知定义域为的函数是奇函数.(1)求的值;(2)用函数单调性的定义证明在上是减函数.21.已知函数.(1)求的定义域;(2)讨论的单调性;(3)求在区间[,2]上的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由指数函数的单调性可知,由对数函数的单调性可知,化简,进而比较大小即可【详解】因为在上是增函数,所以;在上是增函数,所以;,所以,故选:A【点睛】本题考查指数、对数比较大小问题,考查指数函数、对数函数的单调性的应用2、A【解析】由已知确定函数的递推式,利用递推式与奇偶性计算即可【详解】当时,,则,所以当时,,所以又是偶函数,,所以故选:A3、B【解析】函数在上单调递减,所以,函数在上单调递减,所以,所以,答案为B考点:比较大小4、B【解析】因为函数为上的增函数,故利用零点存在定理可判断零点所在的区间.【详解】因为为上的增函数,为上的增函数,故为上的增函数.又,,由零点存在定理可知在存在零点,故选B.【点睛】函数的零点问题有两种类型,(1)计算函数的零点,比如二次函数的零点等,有时我们可以根据解析式猜出函数的零点,再结合单调性得到函数的零点,比如;(2)估算函数的零点,如等,我们无法计算此类函数的零点,只能借助零点存在定理和函数的单调性估计零点所在的范围.5、B【解析】首先确定函数的解析式,然后确定的取值范围即可.【详解】由题意可知函数关于直线对称,则,据此可得,由于,故令可得,函数的解析式为,则,结合三角函数的性质,考查临界情况:当时,;当时,;则的取值范围是.本题选择B选项.【点睛】本题主要考查三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.6、C【解析】先由函数图象平移规律可得,再由为偶函数,可得(),则(),再由可得出的值.【详解】由题意可知,因为为偶函数,所以(),则(),因为,所以.故选:C.7、D【解析】根据分段函数的解析式,令代入先求出,进而可求出的结果.【详解】解:,则令,得,所以.故选:D.8、C【解析】设动点P的坐标,利用已知条件列出方程,化简可得点P的轨迹方程为圆,再判断圆心距和半径的关系即可得解.,详解】设,由,得,整理得,表示圆心为,半径为的圆,圆的圆心为为圆心,为半径的圆两圆的圆心距为,满足,所以两个圆相交.故选:C.9、A【解析】根据题意,逐一分析各选项中两个函数的对称性,再判断作答.【详解】对于A,点是函数图象上任意一点,显然在的图象上,而点与关于y轴对称,则与的图象关于y轴对称,A正确;对于B,点是函数图象上任意一点,显然在的图象上,而点与关于原点对称,则与的图象关于原点对称,B不正确;对于C,点是函数图象上任意一点,显然在的图象上,而点与关于x轴对称,则与的图象关于x轴对称,C不正确;对于D,点是函数图象上任意一点,显然在的图象上,而点与关于直线y=x对称,则与的图象关于直线y=x对称,D不正确.故选:A10、B【解析】根据所在象限可判断出,,从而可得答案.【详解】为第二象限角,,,则点位于第二象限.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、27【解析】由在幂函数的图象上,利用待定系数法求出幂函数的解析式,再计算的值【详解】设幂函数,,因为函数图象过点,则,,幂函数,,故答案为27【点睛】本题主要考查了幂函数的定义与解析式,意在考查对基础知识的掌握情况,是基础题12、【解析】设出幂函数,将点代入解析式,求出解析式即可求解.【详解】设,函数图像经过,可得,解得,所以,所以.故答案为:【点睛】本题考查了幂函数的定义,考查了基本运算求解能力,属于基础题.13、【解析】因为为偶函数,所以等价于,又是区间上单调递增,所以.解得.答案为:.点睛:本题属于对函数单调性应用的考查,若函数在区间上单调递增,则时,有,事实上,若,则,这与矛盾,类似地,若在区间上单调递减,则当时有;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中可以利用对称性数形结合即可.14、①.②.0.5【解析】先将三视图还原几何体,然后利用长方体和锥体的体积公式求解容积即可;设该漏斗外接球的半径为,设球心为,利用,列式求解的值即可.【详解】由题中的三视图可得,原几何体如图所示,其中,,正四棱锥的高为,,,所以该漏斗的容积为;正视图为该几何体的轴截面,设该漏斗外接球的半径为,设球心为,则,因为,又,所以,整理可得,解得,所以该漏斗存在外接球,则故答案为:①;②.15、③④【解析】利用基本不等式可判断①正误;利用抽象函数的定义域可判断②的正误;解对数不等式可判断③;构造函数,函数在上单调递减,结合,求得可判断④.详解】对于①,当时,,由基本不等式可得,当且仅当时,即当时,等号成立,但,故等号不成立,所以,函数,的最小值不是,①错误;对于②,若函数的定义域为,则有,解得,即函数的定义域为,②错误;对于③,若,所以当时,解得:,不满足;当时,解得:,所以的取值范围是,③正确;对于④,令,函数在上单调递减,由得,则,即,故④正确.故答案为:③④.16、【解析】根据两点间的距离求得正确答案.【详解】.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用列举法求解即可;(2)利用列举法求解即可.【小问1详解】由题意,设4名志愿者为甲,乙,丙,丁,4天一轮的值班安排所有可能的结果是:(甲,乙,丙,丁),(甲,乙,丁,丙),(甲,丙,乙,丁),(甲,丙,丁,乙),(甲,丁,乙,丙),(甲,丁,丙,乙),(乙,甲,丙,丁),(乙,甲丁,丙),(乙,丙,甲,丁),(乙,丙,丁,甲),(乙,丁,甲,丙),(乙,丁,丙,甲),(丙,甲,乙,丁),(丙,甲,丁,乙),(丙,乙,甲,丁),(丙,乙,丁,甲),(丙,丁,乙,甲),(丙,丁,甲,乙),(丁,甲,乙,丙),(丁,甲,丙,乙),(丁,乙,甲,丙),(丁,乙,丙,甲),(丁,丙,乙,甲),(丁,丙,甲,乙),共24个样本点设甲乙相邻为事件A,则事件A包含:(甲,乙,丙,丁),(甲,乙,丁,丙),(乙,甲,丙,丁),(乙,甲,丁,丙),(丙,甲,乙,丁),(丙,乙,甲,丁),(丙,丁,乙,甲),(丙,丁,甲,乙),(丁,甲,乙,丙),(丁,乙,甲,丙),(丁,丙,乙,甲),(丁,丙,甲,乙),共12个样本点,故【小问2详解】设甲或乙被安排在前两天值班的为事件B则事件B包含:(甲,乙,丙,丁),(甲,乙,丁,丙),(甲,丙,乙,丁),(甲,丙,丁,乙),(甲,丁,乙,丙),(甲,丁,丙,乙),(乙,甲,丙,丁),(乙,甲,丁,丙),(乙,丙,甲,丁),(乙,丙,丁,甲),(乙,丁,甲,丙),(乙,丁,丙,甲),(丙,甲,乙,丁),(丙,甲,丁,乙),(丙,乙,甲,丁),(丙,乙,丁,甲),(丁,甲,乙,丙),(丁,甲,丙,乙),(丁,乙,甲,丙),(丁,乙,丙,甲),共20个样本点,故.18、(1)(2)72【解析】(1)由题意可得,当且时,,当且时,,从而可求得结果,(2)根据已知条件,结合二次函数的性质,以及基本不等式即可求得答案【小问1详解】由题意得,当且时,,当且时,,所以小问2详解】当当且时,,所以当时,,当且时,,当且仅当,即时取等号,综上,该厂年产量为72千件时,该厂在这一商品的生产中所获利润最大19、(1)A∪B={x|x>0},A∩B={x|2<x<4};(2){a|1<a≤2},【解析】(1)化简集合A,B,利用并集及交集的概念运算即得;(2)分a>1,0<a<1讨论,利用条件列出不等式即得.【小问1详解】∵A={x|2x>4}={x|x>2},B={x||x-a|<2}={x|a-2<x<a+2},∴当a=2时,B={x|0<x<4},所以A∪B={x|x>0},A∩B={x|2<x<4};【小问2详解】当a>1时,C={x|logax<0}={x|0<x<1},因为C⊆B,所以,解得-1≤a≤2,因为a>1,此时1<a≤2,当0<a<1时,C={x|logax<0}={x|x>1},此时不满足C⊆B,综上,a的取值范围为{a|1<a≤2}20、(1)(2)详见解析【解析】(1)既可以利用奇函数的定义求得的值,也可以利用在处有意义的奇函数的性质求,但要注意证明该值使得函数是奇函数.(2)按照函数单调性定义法证明步骤证明即可.【详解】解:(1)解法一:因为函数是定义在上的奇函数,所以,即,整理得,所以,所以.解法二:因为函数是定义在上的奇函数,所以,即,解得.当时,.因为,所以当时,函数是定义域为的奇函数.(2)由(1)得.对于任意的,且,则.因为,所以,则,而,所以,即.所以函数在上是减函数.【点睛】已知函数奇偶性求参数值的方法有:(1)利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 液化气购销合同与液化气购销合同
- 电子书平台开发合作协议
- 企业内部管理软件系统升级维护合同
- 医疗器械研发合作协议
- 全生命周期新能源电站运维协议书
- 知识产权顾问聘用合同
- 股权投资协议书
- 高效节水灌溉系统开发
- 物流配送服务外包项目书含安全保障措施
- 珠宝行业智能珠宝定制与管理系统方案
- 崔允漷-基于课程标准的教学
- 2023年小学五年级下册英语期末试卷分析,菁选3篇
- DL-T 2231-2021 油纸绝缘电力设备频域介电谱测试导则
- 员工月度绩效考核管理办法
- 2023年云南保山电力股份有限公司招聘笔试题库及答案解析
- GB/T 41904-2022信息技术自动化基础设施管理(AIM)系统要求、数据交换及应用
- GB/T 41908-2022人类粪便样本采集与处理
- 信息系统运维服务方案
- 简支梁、悬臂梁挠度计算程序(自动版)
- 统编版小学四年级语文上册五六单元测试卷(附答案)
- 商票保贴协议
评论
0/150
提交评论