2025届福建省长汀第一中学高二数学第一学期期末达标检测模拟试题含解析_第1页
2025届福建省长汀第一中学高二数学第一学期期末达标检测模拟试题含解析_第2页
2025届福建省长汀第一中学高二数学第一学期期末达标检测模拟试题含解析_第3页
2025届福建省长汀第一中学高二数学第一学期期末达标检测模拟试题含解析_第4页
2025届福建省长汀第一中学高二数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届福建省长汀第一中学高二数学第一学期期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.年月日,很多人的微信圈都在转发这样一条微信:“,所遇皆为对,所做皆称心””.形如“”的数字叫“回文数”,即从左到右读和从右到左读都一样的正整数,则位的回文数共有()A. B.C. D.2.已知,为双曲线:的焦点,为,(其中为双曲线半焦距),与双曲线的交点,且有,则该双曲线的离心率为()A. B.C. D.3.在空间直角坐标系中,点关于原点对称的点的坐标为()A. B.C. D.4.已知函数,若对任意的,,且,总有,则的取值范围是()A B.C. D.5.第24届冬季奥林匹克运动会,将于2022年2月4日在北京市和张家口市联合举行.北京将成为奥运史上第一个举办过夏季奥林匹克运动会和冬季奥林匹克运动会的城市.根据安排,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是两个“相似椭圆”(离心率相同的两个椭圆我们称为“相似椭圆”).如图,由外层椭圆长轴一端点A和短轴一端点B分别向内层椭圆引切线AC,BD,若两切线斜率之积等于,则椭圆的离心率为()A. B.C. D.6.某制药厂为了检验某种疫苗预防的作用,把名使用疫苗的人与另外名未使用疫苗的人一年中的记录作比较,提出假设:“这种疫苗不能起到预防的作用”,利用列联表计算得,经查对临界值表知.则下列结论中,正确的结论是()A.若某人未使用该疫苗,则他在一年中有的可能性生病B.这种疫苗预防的有效率为C.在犯错误的概率不超过的前提下认为“这种疫苗能起到预防的作用”D.有的把握认为这种疫苗不能起到预防生病的作用7.南宋数学家杨辉所著的《详解九章算法》中有如下俯视图所示的几何体,后人称之为“三角垛”.其最上层有1个球,第二层有3个球,第三层有6个球,…,则第十层球的个数为()A.45 B.55C.90 D.1108.已知函数在上可导,且,则与的大小关系为A. B.C. D.不确定9.已知数列为递增等比数列,,则数列的前2019项和()A. B.C. D.10.《九章算术》是中国古代张苍、耿寿昌所撰写的一部数学专著,全书总结了战国、秦、汉时期的数学成就,其中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为:“今有人分钱,各人所得钱数依次为等差数列,其中前人所得之和与后人所得之和相等,问各得多少钱?”,则第人得钱数为()A.钱 B.钱C.钱 D.钱11.已知某地区7%的男性和0.49%的女性患色盲.假如男性、女性各占一半,从中随机选一人,则此人恰是色盲的概率是()A.0.01245 B.0.05786C.0.02865 D.0.0374512.已知定义在R上的函数满足,且当时,,则下列结论中正确的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.同时掷两枚骰子,则点数和为7的概率是__________.14.若是直线外一点,为线段的中点,,,则______15.已知正三棱台上、下底面边长分别为1和2,高为1,则这个正三棱台的体积为______.16.设是椭圆上一点,分别是椭圆的左、右焦点,若,则的大小_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,椭圆C的参数方程为(θ为参数),直线l的参数方程为(t为参数)(Ⅰ)写出椭圆C的普通方程和直线l的倾斜角;(Ⅱ)若点P(1,2),设直线l与椭圆C相交于A,B两点,求|PA|·|PB|的值18.(12分)已知椭圆:的离心率为,且经过点.(1)求的方程;(2)设的右焦点为F,过F作两条互相垂直的直线AB和DE,其中A,B,D,E都在椭圆上,求的取值范围.19.(12分)已知数列{an}满足,(1)记,证明:数列{bn}为等比数列,并求数列{bn}的通项公式;(2)记数列{bn}前n项和为Tn,证明:20.(12分)已知数列的前n项和为,且.(1)求的通项公式;.(2)求数列的前n项和.21.(12分)已知等差数列的前n项和为Sn,S9=81,,求:(1)Sn;(2)若S3、、Sk成等比数列,求k22.(10分)已知是边长为2的正方形,正方形绕旋转形成一个圆柱;(1)求该圆柱的表面积;(2)正方形绕顺时针旋转至,求异面直线与所成角的大小

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据“回文数”的对称性,只需计算前位数的排法种数即可,确定这四位数的选数的种数,利用分步乘法计数原理可得结果.【详解】根据“回文数”的对称性,只需计算前位数的排法种数即可,首位数不能放零,首位数共有种选择,第二位、第三位、第四位数均有种选择,因此,位的回文数共有个.故选:C.2、B【解析】根据求得的关系,结合双曲线的定义以及勾股定理,即可求得的等量关系,再求离心率即可.【详解】根据题意,连接,作图如下:显然为直角三角形,又,又点在双曲线上,故可得,解得,由勾股定理可得:,即,即,,故双曲线的离心率为.故选:B.3、C【解析】根据点关于原点对称的性质即可知答案.【详解】由点关于原点对称,则对称点坐标为该点对应坐标的相反数,所以.故选:C4、B【解析】根据函数单调性定义、二次函数性质及对称轴方程,即可求解参数取值范围.【详解】依题意可得,在上为减函数,则,即的取值范围是故选:B【点睛】本题考查函数单调性定义,二次函数性质,属于基础题.5、C【解析】设内层椭圆的方程为,可得外层椭圆的方程为,设切线的方程为,联立方程组,根据,得到,同理得到,结合题意求得,进而求得离心率.【详解】设内层椭圆方程为,因为内外层的椭圆的离心率相同,可设外层椭圆的方程为,设切线的方程为,联立方程组,整理得,由,整理得,设切线的方程为,同理可得,因为两切线斜率之积等于,可得,可得,所以离心率为.故选:C.6、C【解析】根据的值与临界值的大小关系进行判断.【详解】∵,,∴在犯错误的概率不超过的前提下认为“这种疫苗能起到预防的作用”,C对,由已知数据不能确定若某人未使用该疫苗,则他在一年中有的可能性生病,A错,由已知数据不能判断这种疫苗预防的有效率为,B错,由已知数据没有的把握认为这种疫苗不能起到预防生病的作用,D错,故选:C.7、B【解析】根据题意,发现规律并将规律表达出来,第层有个球.【详解】根据规律,可以得知:第一层有个球;第二层有个球;第三层有个球,则根据规律可知:第层有个球设第层的小球个数为,则有:故第十层球的个数为:故选:8、B【解析】由,所以.9、C【解析】根据数列为递增的等比数列,,利用“”法求得,再代入等比数列的前n项和公式求解.【详解】因为数列为递增等比数列,所以,解得:,所以.故选:C【点睛】本题主要考查等比数列的基本运算,还考查了运算求解的能力,属于基础题.10、A【解析】设第所得钱数为钱,设数列、、、、的公差为,根据已知条件可得出关于、的值,即可求得的值.【详解】设第所得钱数为钱,则数列、、、、为等差数列,设数列、、、、公差为,则,解得,故.故选:A.11、D【解析】设出事件,利用全概率公式进行求解.【详解】用事件A,B分别表示随机选1人为男性或女性,用事件C表示此人恰是色盲,则,且A,B互斥,故故选:D12、B【解析】由可得,利用导数判断函数在上的单调性,由此比较函数值的大小确定正确选项.【详解】∵∴,当时,,∴,故∴在内单调递增,又,∴,所以故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用古典概型的概率计算公式即得.【详解】依题意,记抛掷两颗骰子向上的点数分别为,,则可得到数组共有组,其中满足的组数共有6组,分别为,,,,,,因此所求的概率等于.故答案为:.14、【解析】根据题意得到,进而得到,求得的值,即可求解.【详解】因为为线段的中点,所以,所以,又因为,所以,所以故答案为:.15、【解析】先计算两个底面的面积,再由体积公式计算即可.【详解】上底面的面积为,下底面的面积为,则这个正三棱台的体积为.故答案为:16、【解析】,,利用椭圆的定义、结合余弦定理、已知条件,可得,解得,从而可得结果【详解】椭圆,可得,设,,可得,化简可得:,,故答案为【点睛】本题主要考查椭圆的定义以及余弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)见解析;(Ⅱ).【解析】(Ⅰ)利用平方法消去θ得到椭圆C的普通方程为,根据直线参数方程的几何意义求出直线的斜率,从而可得结果;(Ⅱ)把直线的方程,代入中,利用直线参数方程的几何意义求出直线的斜率结合韦达定理可得结果.试题解析:(Ⅰ)消去θ得到椭圆C的普通方程为∵直线的斜率为,∴直线l的倾斜角为(Ⅱ)把直线的方程,代入中,得即,∴t1·t2=4,即|PA|·|PB|=418、(1)(2)【解析】(1)根据椭圆的离心率为,及经过点建立等式可求解;(2)分斜率存在与不存在两种情况进行讨论,当斜率存在时,计算与后再求范围即可.【小问1详解】由题意知的离心率为,整理得,又因为经过点,所以,解得,所以,因此,的方程为.小问2详解】由已知可得,当直线AB或DE有一条的斜率不存在时,可得,或,,此时有或.当AB和DE的斜率都存在时且不为0时,设直线:,直线:,,,,由得,所以,,所以,用替换可得.所以,综上所述,的取值范围为.19、(1)证明见解析;bn=2n(2)证明见解析【解析】(1)由递推关系式转化为等比数列即可求解;(2)由(1)求出,再用裂项相消法求和后就可以证明不等式.【小问1详解】由an+1=2an+1可得所以{bn}是以首项,公比为2的等比数列所以.【小问2详解】易得于是所以因为,所以.20、(1);(2).【解析】(1)根据给定条件结合当时,探求数列的性质即可计算作答.(2)由(1)求出,再利用错位相减法计算作答.小问1详解】依题意,当时,因为,则,当时,,解得,于是得数列是以1为首项,为公比的等比数列,则,所以的通项公式是.【小问2详解】由(1)可知,,则,因此,两式相减得:,于是得,所以数列的前n项和.21、(1)Sn=n2(2)11【解析】(1)由等差数列前n项和公式与下标和性质先求,然后结合可解;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论