版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省临西县实验中学2025届数学高一上期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过点且平行于直线的直线方程为A. B.C. D.2.若定义在上的奇函数在单调递减,且,则的解集是()A. B.C. D.3.在下列各图中,每个图的两个变量具有线性相关关系的图是A.(1)(2) B.(1)(3)C.(2)(4) D.(2)(3)4.设,且,则()A. B.C. D.5.已知,其中a,b为常数,若,则()A. B.C.10 D.26.设,,,则的大小关系为A. B.C. D.7.半径为1cm,圆心角为的扇形的弧长为()A. B.C. D.8.已知,则的最小值是()A.5 B.6C.7 D.89.若函数在上是增函数,则实数k的取值范围是()A. B.C. D.10.已知扇形的周长是6,圆心角为,则扇形的面积是()A.1 B.2C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.不等式对于任意的x,y∈R恒成立,则实数k的取值范围为________12.圆柱的高为1,它的两个底面在直径为2的同一球面上,则该圆柱的体积为____________;13.已知函数,若,,则的取值范围是________14.下列一组数据的分位数是___________.15.为了得到函数的图象,可以将函数的图象向右平移_________个单位长度而得16.已知函数,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)计算:(2)若,,求的值.18.已知且是上的奇函数,且(1)求的解析式;(2)若不等式对恒成立,求取值范围;(3)把区间等分成份,记等分点的横坐标依次为,,设,记,是否存在正整数,使不等式有解?若存在,求出所有的值,若不存在,说明理由.19.已知函数.(1)求的最小正周期;(2)求函数的单调增区间;(3)求函数在区间上值域20.设函数.(1)若,且均为正实数,求的最小值,并确定此时实数的值;(2)若满足在上恒成立,求实数的取值范围.21.已知,.(Ⅰ)求证:函数在上是增函数;(Ⅱ)若,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】解析:设与直线平行直线方程为,把点代入可得,所以所求直线的方程为,故选A2、C【解析】分析函数的单调性,可得出,分、两种情况解不等式,综合可得出原不等式的解集.【详解】因为定义在上的奇函数在单调递减,则函数在上为减函数.且,当时,由可得,则;当时,由可得,则.综上所述,不等式的解集为.故选:C.3、D【解析】由线性相关的定义可知:(2)中两变量线性正相关,(3)中两变量线性负相关,故选:D考点:变量线性相关问题4、C【解析】将等式变形后,利用二次根式的性质判断出,即可求出的范围.【详解】即故选:C【点睛】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.5、A【解析】计算出,结合可求得的值.【详解】因为,所以,若,则.故选:A6、B【解析】利用指数函数与对数函数的单调性判断出的取值范围,从而可得结果.【详解】,,,,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.7、D【解析】利用扇形弧长公式直接计算即可.【详解】圆心角化为弧度为,则弧长为.故选:D.8、C【解析】,根据结合基本不等式即可得出答案.【详解】解:,因为,又,所以,则,当且仅当,即时,取等号,即的最小值是7.故选:C9、C【解析】根据二次函数的对称轴在区间的左边,即可得到答案;【详解】由题意得:,故选:C10、B【解析】设扇形的半径为r,弧长为l,先由周长求出半径和弧长,即可求出扇形的面积.【详解】设扇形的半径为r,弧长为l,因为圆心角为,所以.因为扇形的周长是6,所以,解得:.所以扇形的面积是.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据给定条件将命题转化为关于x的一元二次不等式恒成立,再利用关于y的不等式恒成立即可计算作答.【详解】因为对于任意的x,y∈R恒成立,于是得关于x的一元二次不等式对于任意的x,y∈R恒成立,因此,对于任意的y∈R恒成立,故有,解得,所以实数k的取值范围为.故答案为:12、【解析】由题设,易知圆柱体轴截面的对角线长为2,进而求底面直径,再由圆柱体体积公式求体积即可.【详解】由题意知:圆柱体轴截面的对角线长为2,而其高为1,∴圆柱底面直径为.∴该圆柱的体积为.故答案为:13、【解析】先利用已知条件,结合图象确定的取值范围,设,即得到是关于t的二次函数,再求二次函数的取值范围即可.【详解】先作函数图象如下:由图可知,若,,设,则,,由知,;由知,;故,,故时,最小值为,时,最大值为,故的取值范围是.故答案为:.【点睛】本题解题关键是数形结合,通过图象判断的取值范围,才能分别找到与相等函数值t的关系,构建函数求值域来突破难点.14、26【解析】根据百分位数的定义即可得到结果.【详解】解:,该组数据的第分位数为从小到大排序后第2与3个数据的平均数,第2与3个数据分别是25、27,故该组数据的第分位数为,故答案为:2615、(答案不唯一);【解析】由于,再根据平移求解即可.【详解】解:由于,故将函数的图象向右平移个单位长度可得函数图像.故答案为:16、3【解析】三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用分数指数幂运算法则分别对每一项进行化简,然后合并求解;(2)先利用已知条件,把m、n表示出来,代入要求解的式子中,利用对数的运算法则化简即可.【详解】(1)原式(2)因为,,所以,,所以18、(1);(2);(3)存在,正整数或2.【解析】(1)根据,,即可求出的值,从而可求函数的解析式;(2)根据函数的奇偶性和单调性由题意可得到恒成立,然后通过分类讨论,根据二次不等式恒成立问题的解决方法即可求出答案;(3)设等分点的横坐标为,.首先根据,可得到函数的图象关于点对称,从而可得到,;进而可求出;再根据,从而只需求即可.【小问1详解】∵是上的奇函数,∴,由,可得,,∵,∴,,所以.又,所以为奇函数.所以.【小问2详解】因为,所以在上单调递增,又为上的奇函数,所以由,得,所以,即恒成立,当时,不等式为不能恒成立,故不满足题意;当时,要满足题意,需,解得,所以实数的取值范围为.【小问3详解】把区间等分成份,则等分点的横坐标为,,又,为奇函数,所以的图象关于点对称,所以,,所以,因为,所以,即.故存在正整数或2,使不等式有解.19、(1);(2);(3).【解析】(1)根据二倍角公式和诱导公式,结合辅助角公式可求得解析式,从而利用周期公式可求得周期;(2)利用整体代换即可求单调增区间;(3)由得,从而可得的取值范围.【详解】(1),所以最小正周期(2)由,得,所以函数的单调递增区间是.(3)由得,则,所以20、(1)的最小值为3,此时;(2)【解析】(1)由可得,则由结合基本不等式即可求出;(2)不等式恒成立等价于对恒成立,利用判别式可得对恒成立,再利用判别式即可求出的范围.【详解】(1),则,,当且仅当,即时等号成立,的最小值为3,此时;(2),则,即对恒成立,则,即对恒成立,则,解得.【点睛】本题考查基本不等式的应用,考查一元二次不等式的恒成立问题,属于中档题.21、(Ⅰ)答案见详解;(Ⅱ).【解析】(Ⅰ)利用定义法证明函数单调性;(Ⅱ)判断函数奇偶性,并结合的单调性将不等式转化为不等式组,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度企业咨询服务与技术转让合同2篇
- 运输合同纠纷运输合同简单版本
- 化工原理自测题:第六章(自)
- 人教版九年级化学第九单元过关训练课件
- 人教版九年级化学第八单元3金属资源的利用和保护课时1常见的金属矿石和铁的冶炼分层作业课件
- 人教版九年级化学第一单元走进化学世界3走进化学实验室课时2物质的加热仪器的连接和洗涤教学教学课件
- 最简单沙子购销合同范本
- 人教版九年级化学第二单元我们周围的空气2氧气课时2化合反应和氧化反应教学教学课件
- 客房员工年终总结
- 职业生涯规划课件
- 第一单元 少年有梦 单元思考与行动 教案-2024-2025学年统编版道德与法治七年级上册
- 2024北京市租房合同自行成交版下载
- 庆祝第75个国庆节共筑中国梦大国华诞繁盛共享课件
- 2024年江西省高考化学试卷(真题+答案)
- 人教版小学语文一年级单元测试题-全册
- 2024-2030年中国PQQ行业市场发展分析及前景趋势与投资研究报告
- 2024年新青岛版四年级上册科学全册知识点六三制
- 注册消防工程师案例分析真题(完整)
- 实验室经费管理制度
- 2024-2030年中国数字商务行业市场发展趋势与前景展望战略分析报告
- 烟草专卖行政执法中存在的问题及对策研究
评论
0/150
提交评论