下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市荣昌中学校20232024学年高二下学期4月期中考试数学试题全卷满分150分,考试时间120分钟.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某学校开设5门球类运动课程、6门田径类运动课程和3门水上运动课程供学生学习,某位学生任选1门课程学习,则不同的选法共有()A90种 B.30种 C.14种 D.11种2.二项式的各项系数之和为()A.512 B. C.2 D.3.若函数,则()A.0 B. C. D.4.从乒乓球运动员男5名、女6名中组织一场混合双打比赛,不同的组合方法种数为()A. B.C. D.5.某位同学家中常备三种感冒药,分别为金花清感颗粒3盒、莲花清瘟胶囊2盒、清开灵颗粒5盒.若这三类药物能治愈感冒的概率分别为,他感冒时,随机从这几盒药物里选择一盒服用(用药请遵医嘱),则感冒被治愈的概率为()A. B. C. D.6.已知(为常数)在上有最大值3,则函数在上的最小值为()A. B. C. D.7.质数(primenumber)又称素数,一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,则这个数为质数,数学上把相差为2的两个素数叫做“孪生素数”.如:3和5,5和7……,在1900年的国际数学大会上,著名数学家希尔伯特提出了23个问题,其中第8个就是大名鼎鼎的孪生素数猜想:即存在无穷多对孪生素数.我国著名数学家张益唐2013年在《数学年刊》上发表论文《素数间的有界距离》,破解了困扰数学界长达一个半世纪的难题,证明了孪生素数猜想的弱化形式.那么,如果我们在不超过的自然数中,随机选取两个不同的数,记事件,这两个数都是素数;事件:这两个数不是孪生素数,则()A B. C. D.8.已知函数,若不等式在上恒成立,则实数a的取值范围是()A. B. C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知定义域为的函数的导函数为,且的图象如图所示,则()A.函数在区间上单调递增 B.函数在上单调递减C.函数在处取得极小值 D.函数在处取得极大值10.甲罐中有5个红球,5个白球,乙罐中有3个红球,7个白球.先从甲罐中随机取出一球放入乙罐,再从乙罐中随机取出一球.表示事件“从甲罐取出的球是红球”,表示事件“从甲罐取出的球是白球”,B表示事件“从乙罐取出的球是红球”.则下列结论正确的是()A.、为对立事件 B.C. D.11.设函数,则()A.当时,直线不是曲线的切线B当时,函数有三个零点C.若有三个不同的零点,,,则D.若曲线上有且仅有四点能构成一个正方形,则三、填空题:本题共3小题,每小题5分,共15分.12.已知函数在点处的切线方程为,则______.13若,则______.14.已知分别是函数和图象上的动点,若对任意的,都有恒成立,则实数的最大值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数,且.(1)求函数的图象在点处的切线方程;(2)求函数的单调区间.16.在的展开式中,(1)求二项式系数最大的项;(2)若第项是有理项,求的取值集合.(3)系数的绝对值最大的项是第几项;17.如图,在四棱锥中,四边形是正方形,是等边三角形,平面平面,E,F分别是棱PC,AB的中点.(1)证明:平面.(2)求平面PBC与平面PDF夹角的余弦值.18.已知椭圆上、下顶点分别为,点在上,且.(1)求椭圆的标准方程;(2)设坐标原点为,若不经过点的直线与相交于两点,直线与的斜率互为相反数,当的面积最大时,求直线的方程.19.英国数学家泰勒发现了如下公式:其中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 暨南大学《工程制图及CAD》2020-2021学年第一学期期末试卷
- 济宁学院《乒乓球V》2021-2022学年第一学期期末试卷
- PE工程师工作总结
- 精神病医疗科普
- 脑出血的针灸治疗
- 连续肾脏替代治疗处方
- 2024年度版权许可协议:电影制品发行与放映权的详细规定2篇
- 爱牙日护理宣教
- 2024版二手车金融服务合同3篇
- 玉林师范学院《课堂教学观察》2022-2023学年第一学期期末试卷
- 2024-2030年中国硅铁行业发展经营形势分析及未来前景展望报告
- 2024-2030年中国畜禽宰杀行业市场运营模式及未来发展动向预测报告
- 初中德育工作总结:活动与创新
- 2024-2030年中国热泵烘干机行业竞争态势与应用趋势预测报告
- 2023-2024部编版四年级语文上册期中测试卷(附答案)
- 企业技术创新与成果转化
- 中医药适宜技术推广实施方案(3篇)
- 人教版小学劳动教育五年级上册教学计划-
- 2024年元旦联欢会活动策划方案
- 极端天气、紧急情况停产撤人管理制度
- 基于数据流的动态数据挖掘研究
评论
0/150
提交评论