东莞市重点中学2025届高二上数学期末统考试题含解析_第1页
东莞市重点中学2025届高二上数学期末统考试题含解析_第2页
东莞市重点中学2025届高二上数学期末统考试题含解析_第3页
东莞市重点中学2025届高二上数学期末统考试题含解析_第4页
东莞市重点中学2025届高二上数学期末统考试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

东莞市重点中学2025届高二上数学期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.窗花是贴在窗纸或窗户玻璃上的剪纸,是古老的传统民间艺术之一.如图是一个窗花的图案,以正六边形各顶点为圆心、边长为半径作圆,阴影部分为其公共部分.现从该正六边形中任取一点,则此点取自于阴影部分的概率为()A. B.C. D.2.长方体中,,,,为侧面内(含边界)的动点,且满足,则四棱锥体积的最小值为()A. B.C. D.3.已知一个几何体的三视图如图,则其外接球的体积为()A. B.C. D.4.已知四棱锥,平面PAB,平面PAB,底面ABCD是梯形,,,,满足上述条件的四棱锥的顶点P的轨迹是()A.椭圆 B.椭圆的一部分C.圆 D.不完整的圆5.某三棱锥的三视图如图所示,则该三棱锥内切球的表面积为A.B.C.D.6.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. B.C. D.7.已知A(3,2),点F为抛物线的焦点,点P在抛物线上移动,为使取得最小值,则点P的坐标为()A.(0,0) B.(2,2)C. D.8.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数到与一般的等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.如数列1,3,6,10,前后两项之差组成新数列2,3,4,新数列2,3,4为等差数列、这样的数列称为二阶等差数列.现有二阶等差数列,其前7项分别为2,3,5,8,12,17,23则该数列的第100项为()A.4862 B.4962C.4852 D.49529.在等差数列中,为其前项和,若.则()A. B.C. D.10.点分别为椭圆左右两个焦点,过的直线交椭圆与两点,则的周长为()A.32 B.16C.8 D.411.已知椭圆的左焦点是,右焦点是,点P在椭圆上,如果线段的中点在y轴上,那么()A.3:5 B.3:4C.5:3 D.4:312.双曲线的焦点到渐近线的距离为()A. B.2C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在等比数列中,若,是方程两根,则________.14.如图,在长方体ABCD﹣A'B'C'D'中,点P,Q分别是棱BC,CD上的动点,BC=4,CD=3,CC'=2,直线CC'与平面PQC'所成的角为30°,则△PQC'的面积的最小值是__15.过抛物线的焦点的直线交抛物线于点、,且点的横坐标为,过点和抛物线顶点的直线交抛物线的准线于点,则的面积为___________.16.在三棱锥中,点Р在底面ABC内的射影为Q,若,则点Q定是的______心三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,椭圆的左、右焦点分别为、,左、右顶点分别为、,为椭圆上一点,连接并延长交椭圆于点,已知椭圆的离心率为,△的周长为8(1)求椭圆的方程;(2)设点的坐标为①当,,成等差数列时,求点的坐标;②若直线、分别与直线交于点、,以为直径的圆是否经过某定点?若经过定点,求出定点坐标;若不经过定点,请说明理由18.(12分)有一种鱼的身体吸收汞,当这种鱼身体中的汞含量超过其体重的1.00ppm(即百万分之一)时,人食用它,就会对人体产生危害.现从一批该鱼中随机选出30条鱼,检验鱼体中的汞含量与其体重的比值(单位:ppm),数据统计如下:0.070.240.390.540.610.660.730.820.820.820.870.910.950.980.981.021.021.081.141.201.201.261.291.311.371.401.441.581.621.68(1)求上述数据的众数,并估计这批鱼该项数据的80%分位数;(2)有A,B两个水池,两水池之间有8个完全相同的小孔联通,所有的小孔均在水下,且可以同时通过2条鱼①将其中汞的含量最低的2条鱼分别放入A水池和B水池中,若这2条鱼的游动相互独立,均有的概率进入另一水池且不再游回,求这两条鱼最终在同一水池的概率;②将其中汞的含量最低的2条鱼都先放入A水池中,若这2条鱼均会独立地且等可能地从其中任意一个小孔由A水池进入B水池且不再游回A水池,求这两条鱼由不同小孔进入B水池的概率19.(12分)已知点,,线段是圆的直径.(1)求圆的方程;(2)过点的直线与圆相交于,两点,且,求直线的方程.20.(12分)已知如图①,在菱形ABCD中,且,为AD的中点,将沿BE折起使,得到如图②所示的四棱锥,在四棱锥中,求解下列问题:(1)求证:BC平面ABE;(2)若P为AC中点,求二面角的余弦值.21.(12分)已知,C是圆B:(B是圆心)上一动点,线段AC的垂直平分线交BC于点P(1)求动点P的轨迹的方程;(2)设E,F为与x轴的两交点,Q是直线上动点,直线QE,QF分别交于M,N两点,求证:直线MN过定点22.(10分)已知函数.(1)求函数的极值;(2)若对恒成立,求实数a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】求得阴影部分的面积,结合几何概型概率计算公式,计算出所求的概率.【详解】设正六边形的边长为,则其面积为.阴影部分面积为,故所求概率为.故选:D2、D【解析】取的中点,以点为坐标原点,、、的方向分别为、、轴的正方向建立空间直角坐标系,分析可知点的轨迹是以点、为焦点的椭圆,求出椭圆的方程,可知当点为椭圆与棱或的交点时,点到平面的距离取最小值,由此可求得四棱锥体积的最小值.【详解】取的中点,以点为坐标原点,、、的方向分别为、、轴的正方向建立如下图所示的空间直角坐标系,设点,其中,,则、,因为平面,平面,则,所以,,同理可得,所以,,所以点的轨迹是以点、为焦点,且长轴长为的椭圆的一部分,则,,,所以,点的轨迹方程为,点到平面的距离为,当点为曲线与棱或棱的交点时,点到平面的距离取最小值,将代入方程得,因此,四棱锥体积的最小值为.故选:D.3、D【解析】根据三视图还原几何体,将几何体补成长方体,计算出几何体的外接球直径,结合球体体积公式即可得解.【详解】根据三视图还原原几何体,如下图所示:由图可知,该几何体三棱锥,且平面,将三棱锥补成长方体,所以,三棱锥的外接球直径为,故,因此,该几何体的外接球的体积为.故选:D【点睛】方法点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解(2)若球面上四点P,A,B,C构成的三条线段两两互相垂直,一般把有关元素“补形”成为一个球内接长方体,利用求解4、D【解析】根据题意,分析得动点满足的条件,结合圆以及椭圆的方程,以及点的限制条件,即可判断轨迹.【详解】因为平面PAB,平面PAB,则//,又面面,故可得;因为,故可得,则,综上所述:动点在垂直的平面中,且满足;为方便研究,不妨建立平面直角坐标系进行说明,在平面中,因为,以中点为坐标原点,以为轴,过且垂直于的直线为轴建立平面直角坐标系,如下所示:因为,故可得,整理得:,故动点的轨迹是一个圆;又当三点共线时,几何体不是空间几何体,故动点的轨迹是一个不完整的圆.故选:.【点睛】本题考察立体几何中动点的轨迹问题,处理的关键是利用立体几何知识,找到动点满足的条件,进而求解轨迹.5、A【解析】由三视图可知该几何体是一个三棱锥,根据等积法求出几何体内切球的半径,再计算内切球的表面积【详解】解:由三视图知该几何体是一个三棱锥,放入棱长为2的正方体中,如图所示:设三棱锥内切球的半径为,则由等体积法得,解得,所以该三棱锥内切球的表面积为故选:A【点睛】本题考查了由三视图求三棱锥内切球表面积的应用问题,属于中档题6、C【解析】设,利用得到关于的方程,解方程即可得到答案.【详解】如图,设,则,由题意,即,化简得,解得(负值舍去).故选:C【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.7、B【解析】设点P到准线的距离为,根据抛物线的定义可知,即可根据点到直线的距离最短求出【详解】如图所示:设点P到准线的距离为,准线方程为,所以,当且仅当点为与抛物线的交点时,取得最小值,此时点P的坐标为故选:B8、D【解析】根据题意可得数列2,3,5,8,12,17,23,,满足:,,从而利用累加法即可求出,进一步即可得到的值【详解】2,3,5,8,12,17,23,后项减前项可得1,2,3,4,5,6,所以,所以.所以.故选:D9、C【解析】利用等差数列的性质和求和公式可求得的值.【详解】由等差数列的性质和求和公式可得.故选:C.10、B【解析】由题意结合椭圆的定义可得,而的周长等于,从而可得答案【详解】解:由得,由题意得,所以的周长等于,故选:B11、A【解析】求出椭圆的焦点坐标,再根据点在椭圆上,线段的中点在轴上,求得点坐标,进而计算,从而求解.【详解】由椭圆方程可得:,设点坐标为,线段的中点为,因为线段中点在轴上,所以,即,代入椭圆方程得或,不妨取,则,所以,故选:A.12、A【解析】根据点到直线距离公式进行求解即可.【详解】由双曲线的标准方程可知:,该双曲线的焦点坐标为:,双曲线的渐近线方程为:,所以焦点到渐近线的距离为:,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】由题意求得,,再结合等比数列的性质,即可求解.【详解】由题意知,,是方程的两根,可得,,又由,,所以,,可得,又由,所以.故答案为:.【点睛】本题主要考查了等比数列的通项公式,以及等比数列的性质的应用,其中解答中熟练应用等比数列的性质是解答的关键,着重考查了推理与运算能力,属于基础题.14、8【解析】设三棱锥C﹣C′PQ的高为h,CQ=x,CP=y,由体积法求得的关系,由直线CC’与平面C’PQ成的角为30°,得到xy≥8,再由VC﹣C′PQ=VC′﹣CPQ,能求出△PQC'的面积的最小值【详解】解:设三棱锥C﹣C′PQ的高为h,CQ=x,CP=y,由长方体性质知两两垂直,所以,,,,,所以,由得,所以,∵直线CC’与平面C’PQ成的角为30°,∴h=2,∴,,∴xy≥8,再由体积可知:VC﹣C′PQ=VC′﹣CPQ,得,S△C′PQ=xy,∴△PQC'的面积的最小值是8故答案为:815、##【解析】不妨设点为第一象限内的点,求出点的坐标,可求得直线、的方程,求出点、的坐标,可求得以及点到直线的距离,利用三角形的面积公式可求得的面积.【详解】不妨设点为第一象限内的点,设点,其中,则,可得,即点,抛物线的焦点为,,所以,直线的方程为,联立,解得或,即点,所以,,直线的方程为,抛物线的准线方程为,联立,可得点,点到直线的距离为,因此,.故答案为:.16、外【解析】由可得,故是的外心.【详解】解:如图,∵点在底面ABC内的射影为,∴平面又∵平面、平面、平面,∴、、.在和中,,∴,∴同理可得:,故故是的外心.故答案为:外.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)①或;②过定点、,理由见解析.【解析】(1)由焦点三角形的周长、离心率求椭圆参数,即可得椭圆方程.(2)①由(1)可得,结合椭圆的定义求,即可确定的坐标;②由题设,求直线、的方程,进而求、坐标,即可得为直径的圆的方程,令求横坐标,即可得定点.【小问1详解】由题设,易知:,可得,则,∴椭圆.【小问2详解】①由(1)知:,令,则,∴,解得,故,此时或②由(1),,,∴可令直线:,直线:,∴将代入直线可得:,,则圆心且半径为,∴为直径的圆为,当时,,又,∴,可得或.∴为直径的圆过定点、.【点睛】关键点点睛:第二问,应用点斜式写出直线、的方程,再求、坐标,根据定义求为直径的圆的方程,最后令及在椭圆上求定点.18、(1)众数为0.82,8%分位数约为1.34(2)①;②【解析】(1)根据题中表格数据即可求得答案;(2)①两条鱼有可能均在A水池也可能都在B水池,故可根据互斥事件的概率结合相互独立事件的概率计算求得答案;②先求出这两条鱼由同一个小孔进入B水池的概率,然后根据对立事件的概率计算方法,求得答案.【小问1详解】由题意知,数据的众数为0.82,估计这批鱼该项数据的80%分位数约为【小问2详解】①记“两鱼最终均在A水池”为事件A,则,记“两鱼最终均在B水池”为事件B,则,∵事件A与事件B互斥,∴两条鱼最终在同一水池的概率为②记“两鱼同时从第一个小孔通过”为事件,“两鱼同时从第二个小孔通过”为事件,…依次类推,而两鱼的游动独立,∴,记“两条鱼由不同小孔进入B水池”为事件C,则C与对立,又由事件,事件,…,事件互斥,∴,即19、(1);(2)或.【解析】(1)AB两点的中点为圆心,AB两点距离的一半为半径;(2)分斜率存在和不存在,根据垂径定理即可求解.【小问1详解】已知点,,线段是圆M的直径,则圆心坐标为,∴半径,∴圆的方程为;【小问2详解】由(1)可知圆的圆心,半径为.设为中点,则,,则.当的斜率不存在时,的方程为,此时,符合题意;当的斜率存在时,设的方程为,即kx-y+2=0,则,解得,故直线的方程为,即.综上,直线的方程为或.20、(1)证明见解析;(2)【解析】(1)利用题中所给的条件证明,,因为,所以,,即可证明平面;(2)先证明平面,以为坐标原点,,,的方向分别为轴,轴,轴,建立如图所示的空间直角坐标系,求出平面的一个法向量,平面的一个法向量,利用向量的夹角公式即可求解【详解】(1)在图①中,连接,如图所示:因为四边形为菱形,,所以是等边三角形.因为为的中点,所以,.又,所以.在图②中,,所以,即.因为,所以,.又,,平面.所以平面.(2)由(1)知,,因为,,平面.所以平面.以为坐标原点,,,的方向分别为轴,轴,轴,建立如图所示的空间直角坐标系:则,,,,.因为为的中点,所以.所以,.设平面的一个法向量为,由得.令,得,,所以.设平面的一个法向量为.因为,由得令,,,得则,由图象可知二面角为锐角,所以二面角的余弦值为.21、(1)(2)证明见解析【解析】(1)根据,利用椭圆的定义求解;(2)(解法1)设,得到,的方程,与椭圆方程联立,求得M,N的坐标,写出直线的方程求解;(解法2)上同解法1,由对称性分析知动直线MN所过定点一定在x轴上,设所求定点为,由C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论