北京市西城区第十四中2025届高二数学第一学期期末教学质量检测试题含解析_第1页
北京市西城区第十四中2025届高二数学第一学期期末教学质量检测试题含解析_第2页
北京市西城区第十四中2025届高二数学第一学期期末教学质量检测试题含解析_第3页
北京市西城区第十四中2025届高二数学第一学期期末教学质量检测试题含解析_第4页
北京市西城区第十四中2025届高二数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市西城区第十四中2025届高二数学第一学期期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线l和两个不同的平面,,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知集合,则()A. B.C. D.3.双曲线的焦点坐标为()A. B.C. D.4.抛物线的准线方程是A.x=1 B.x=-1C. D.5.已知数列中,,(),则等于()A. B.C. D.26.函数在上是单调递增函数,则的最大值等于()A.2 B.3C.5 D.67.若两个不同平面,的法向量分别为,,则()A.,相交但不垂直 B.C. D.以上均不正确8.设函数的导函数是,若,则()A. B.C. D.9.已知:,直线l:,M为直线l上的动点,过点M作的切线MA,MB,切点为A,B,则四边形MACB面积的最小值为()A.1 B.2C. D.410.我国古代数学论著中有如下叙述:“远望巍巍塔七层,红光点点倍加增,共灯二百五十四.”思如下:一座7层塔共挂了254盏灯,且相邻两层下一层所挂灯数是上一层所挂灯数的2倍.下列结论不正确的是()A.底层塔共挂了128盏灯B.顶层塔共挂了2盏灯C.最下面3层塔所挂灯的总盏数比最上面3层塔所挂灯的总盏数多200D.最下面3层塔所挂灯的总盏数是最上面3层塔所挂灯的总盏数的16倍11.已知命题对任意,总有;是方程的根则下列命题为真命题的是A. B.C. D.12.意大利数学家斐波那契的《算经》中记载了一个有趣的数列:1,1,2,3,5,8,13,21,34,55,89,144,……,这就是著名的斐波那契数列,该数列的前2022项中有()个奇数A.1012 B.1346C.1348 D.1350二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在处有极值2,则______.14.已知函数,数列是正项等比数列,且,则__________15.过点的直线与双曲线交于两点,且点恰好是线段的中点,则直线的方程为___________.16.双曲线的一条渐近线的一个方向向量为,则______(写出一个即可)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥中,底面ABCD为菱形,,侧面为等腰直角三角形,,,点E为棱AD的中点(1)求证:平面ABCD;(2)求直线AB与平面PBC所成角的正弦值18.(12分)设函数.(1)求函数的单调区间;(2)求函数的极值.19.(12分)在△中,已知、、分别是三内角、、所对应的边长,且(Ⅰ)求角的大小;(Ⅱ)若,且△的面积为,求.20.(12分)设命题p:实数x满足,其中;命题q:若,且为真,求实数x的取值范围;若是的充分不必要条件,求实数m的取值范围21.(12分)已知椭圆的一个顶点恰好是抛物线的焦点,椭圆C的离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)从椭圆C在第一象限内的部分上取横坐标为2的点P,若椭圆C上有两个点A,B使得的平分线垂直于坐标轴,且点B与点A的横坐标之差为,求直线AP的方程.22.(10分)已知抛物线C的焦点为,N为抛物线上一点,且(1)求抛物线C的方程;(2)过点F且斜率为k的直线l与C交于A,B两点,,求直线l的方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据直线、平面的位置关系,应用定义法判断两个条件之间的充分、必要性.【详解】当,时,直线l可与平行、相交,故不一定成立,即充分性不成立;当,时,直线l可在平面内,故不一定成立,即必要性不成立.故选:D.2、C【解析】解一元二次不等式求集合A,再由集合的交运算求即可.【详解】由题设,,∴.故选:C.3、C【解析】把双曲线方程化为标准形式,直接写出焦点坐标.【详解】,焦点在轴上,,故焦点坐标为.故选:C.4、C【解析】先把抛物线方程整理成标准方程,进而求得p,再根据抛物线性质得出准线方程【详解】解:整理抛物线方程得,∴p=∵抛物线方程开口向上,∴准线方程是y=﹣故答案为C【点睛】本题主要考查抛物线的标准方程和简单性质.属基础题5、D【解析】由已知条件可得,,…,即是周期为3的数列,即可求.【详解】由题设,知:,,,…,∴是周期为3的数列,而的余数为1,∴.故选:D.6、B【解析】由f(x)=x3﹣ax在[1,+∞)上是单调增函数,得到在[1,+∞)上,恒成立,从而解得a≤3,故a的最大值为3【详解】解:∵f(x)=x3﹣ax在[1,+∞)上是单调增函数∴在[1,+∞)上恒成立即a≤3x2,∵x∈[1,+∞)时,3x2≥3恒成立,∴a≤3,∴a的最大值是3故选:B7、B【解析】由向量数量积为0可求.【详解】∵,,∴,∴,∴,故选:B.8、A【解析】求导后,令,可求得,再令可求得结果.【详解】因为,所以,所以,所以,所以,所以.故选:A【点睛】本题考查了导数的计算,考查了求导函数值,属于基础题.9、B【解析】易知四边形MACB的面积为,然后由最小,根据与直线l:垂直求解.【详解】:化为标准方程为:,由切线长得:,四边形MACB的面积为,若四边形MACB的面积最小,则最小,此时与直线l:垂直,所以,所以四边形MACB面积的最小值,故选:B10、C【解析】由题设易知是公比为2的等比数列,应用等比数列前n项和公式求,结合各选项的描述及等比数列通项公式、前n项和公式判断正误即可.【详解】从上往下记每层塔所挂灯的盏数为,则数列是公比为2的等比数列,且,解得,所以顶层塔共挂了2盏灯,B正确;底层塔共挂了盏灯,A正确最上面3层塔所挂灯总盏数为14,最下面3层塔所挂灯的总盏数为224,C不正确,D正确故选:C.11、A【解析】由绝对值的意义可知命题p为真命题;由于,所以命题q为假命题;因此为假命题,为真命题,“且”字联结的命题只有当两命题都真时才是真命题,所以答案选A12、C【解析】由斐波那契数列的前几项分析该数列的项的奇偶规律,由此确定该数列的前2022项中的奇数的个数.【详解】由已知可得为奇数,为奇数,为偶数,因为,所以为奇数,为奇数,为偶数,…………所以为奇数,为奇数,为偶数,又故该数列的前2022项中共有1348个奇数,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、6【解析】根据函数在处有极值2,可得,解方程组即可得解.【详解】解:,因为函数在处有极值2,所以,即,解得,则,故当时,,当时,,所以函数在处有极大值,所以,所以.故答案为:6.14、##9.5【解析】根据给定条件计算当时,的值,再结合等比数列性质计算作答.【详解】函数,当时,,因数列是正项等比数列,且,则,,同理,令,又,则有,,所以.故答案为:15、【解析】设,,,,分别代入双曲线方程,两式相减,化简可得:,结合中点坐标公式求得直线的斜率,再利用点斜式即可求直线方程【详解】过点的直线与该双曲线交于,两点,设,,,,,两式相减可得:,因为为的中点,,,,则,所以直线的方程为,即为故答案为:【点睛】方法点睛:对于有关弦中点问题常用“点差法”,其解题步骤为:①设点(即设出弦的两端点坐标);②代入(即代入圆锥曲线方程);③作差(即两式相减,再用平方差公式分解因式);④整理(即转化为斜率与中点坐标的关系式),然后求解.16、(答案不唯一)【解析】写出双曲线的渐近线方程,结合方向向量的定义求即可.【详解】由题设,双曲线的渐近线方程为,又是一条渐近线的一个方向向量,所以或或或,所以或.故答案为:(答案不唯一)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,(2)【解析】(1)题中易得,,利用勾股定理可得,从而可证得线面垂直;(2)以E为原点,EA为x轴,EB为y轴,EP为z轴,建立空间直角坐标系,用空间向量法求线面角的正弦值【详解】(1)证明:在四棱锥中,底面ABCD为菱形,,侧面为等腰直角三角形,,,点E为棱AD的中点,,,,,,,平面ABCD(2)以E为原点,EA为x轴,EB为y轴,EP为z轴,建立空间直角坐标系,0,,,0,,,,,,设平面PBC的法向量y,,则,取,得1,,设直线AB与平面PBC所成角,直线AB与平面PBC所成角的正弦值为:【点睛】本题考查线面垂直的证明,考查空间向量法求线面角.空间角的求法一般都是建立空间直角坐标系,用空间向量法求得空间角18、(1)单调递减区间为和,单调递增区间为(2)极小值,极大值为【解析】(1)先对函数求导,然后根据导数的正负可求出函数的单调区间,(2)根据(1)中求得单调区间可求出函数的极值【小问1详解】.当变化时,,的变化情况如下表所示:00减极小值增极大值减的单调递减区间为和,单调递增区间为.【小问2详解】由(1)可知在处取得极小值,在处取得极大值.的极小值为,极大值为.19、(Ⅰ);(Ⅱ).【解析】(Ⅰ)利用余弦定理和得到关于角A的关系式,求解A(II)再结合正弦面积公式得到三角形的边长的求解【详解】解:(Ⅰ)在△ABC中,(Ⅱ)由,得20、(1)(2)【解析】解二次不等式,其中解得,解得:,取再求交集即可;写出命题所对应的集合,命题p:,命题q:,由是的充分不必要条件,即p是q的充分不必要条件,则A是B的真子集,列不等式组可求解【详解】解:(1)由,其中;解得,又,即,由得:,又为真,则,得:,故实数x的取值范围为;由得:命题p:,命题q:,由是的充分不必要条件,即p是q的充分不必要条件,A是B的真子集,所以,即故实数m取值范围为:.【点睛】本题考查了二次不等式的解法,复合命题的真假,命题与集合的关系,属于简单题21、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题意可得关于参数的方程,解之即可得到结果;(Ⅱ)设直线AP的斜率为k,联立方程结合韦达定理可得A点坐标,同理可得B点坐标,结合横坐标之差为,可得直线方程.【详解】(Ⅰ)由抛物线方程可得焦点为,则椭圆C的一个顶点为,即.由,解得.∴椭圆C的标准方程是;(Ⅱ)由题可知点,设直线AP的斜率为k,由题意知,直线BP的斜率为,设,,直线AP的方程为,即.联立方程组消去y得.∵P,A为直线AP与椭圆C的交点,∴,即.把换成,得.∴,解得,当时,直线BP的方程为,经验证与椭圆C相切,不符合题意;当时,直线BP的方程为,符合题意.∴直线AP得方程为.【点睛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论