陕西省安康市2025届高二数学第一学期期末复习检测模拟试题含解析_第1页
陕西省安康市2025届高二数学第一学期期末复习检测模拟试题含解析_第2页
陕西省安康市2025届高二数学第一学期期末复习检测模拟试题含解析_第3页
陕西省安康市2025届高二数学第一学期期末复习检测模拟试题含解析_第4页
陕西省安康市2025届高二数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省安康市2025届高二数学第一学期期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.正方体的棱长为2,E,F,G分别为,AB,的中点,则直线ED与FG所成角的余弦值为()A. B.C. D.2.已知命题p:函数在(0,1)内恰有一个零点;命题q:函数在上是减函数,若p且为真命题,则实数的取值范围是A. B.2C.1<≤2 D.≤l或>23.曲线在点处的切线方程是A. B.C. D.4.等比数列中,,则()A. B.C.2 D.45.有一机器人的运动方程为,(是时间,是位移),则该机器人在时刻时的瞬时速度为()A. B.C. D.6.若复数满足,则复数对应的点的轨迹围成图形的面积等于()A. B.C. D.7.设函数在定义域内可导,的图像如图所示,则导函数的图象可能为()A. B.C. D.8.已知直线与直线,若,则()A.6 B.C.2 D.9.若,(),则,的大小关系是A. B.C. D.,的大小由的取值确定10.若一个正方体的全面积是72,则它的对角线长为()A. B.12C. D.611.对于公差为1的等差数列,;公比为2的等比数列,,则下列说法不正确的是()A.B.C.数列为等差数列D.数列的前项和为12.对于两个平面、,“内有三个点到的距离相等”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.命题“,”的否定是____________.14.抛物线的焦点坐标为__________15.已知抛物线C:y2=2px过点P(1,1):①点P到抛物线焦点的距离为②过点P作过抛物线焦点的直线交抛物线于点Q,则△OPQ的面积为③过点P与抛物线相切的直线方程为x-2y+1=0④过点P作两条斜率互为相反数的直线交抛物线于M,N两点,则直线MN的斜率为定值其中正确的是________.16.已知=(3,a+b,a﹣b)(a,b∈R)是直线l的方向向量,=(1,2,3)是平面α的法向量,若l⊥α,则5a+b=__三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,讨论的单调性;(2)当时,证明18.(12分)同时抛掷两颗骰子,观察向上点数.(1)试表示“出现两个1点”这个事件相应的样本空间的子集;(2)求出现两个1点”的概率;(3)求“点数之和为7”的概率.19.(12分)如图所示,、分别为椭圆的左、右焦点,A,B为两个顶点,已知椭圆C上的点到、两点的距离之和为4.(1)求a的值和椭圆C的方程;(2)过椭圆C的焦点作AB的平行线交椭圆于P,Q,求的面积20.(12分)动点M到点的距离比它到直线的距离小,记M的轨迹为曲线C.(1)求C的方程;(2)已知圆,设P,A,B是C上不同的三点,若直线PA,PB均与圆D相切,若P的纵坐标为,求直线AB的方程.21.(12分)已知,命题p:对任意,不等式恒成立;命题q:存在,使得不等式成立;(1)若p为真命题,求a的取值范围;(2)若为真命题,求a的取值范围22.(10分)已知抛物线的准线方程是,直线与抛物线相交于M、N两点(1)求抛物线的方程;(2)求弦长;(3)设O为坐标原点,证明:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】建立空间直角坐标系,利用空间向量坐标运算即可求解.【详解】如图所示建立适当空间直角坐标系,故选:B2、C【解析】命题p为真时:;命题q为真时:,因为p且为真命题,所以命题p为真,命题q为假,即,选C考点:命题真假3、D【解析】先求导数,得切线的斜率,再根据点斜式得切线方程.【详解】,选D.点睛】本题考查导数几何意义以及直线点斜式方程,考查基本求解能力,属基础题.4、D【解析】利用等比数列的下标特点,即可得到结果.【详解】∵,∴,∴,∴.故选:D5、B【解析】对运动方程求导,根据导数意义即速度求得在时的导数值即可.【详解】由题知,,当时,,即速度为7.故选:B6、D【解析】利用复数的几何意义,即可判断轨迹图形,再求面积.【详解】复数满足,表示复数对应的点的轨迹是以点为圆心,半径为3的圆,所以围成图形的面积等于.故选:D7、D【解析】根据函数的单调性得到导数的正负,从而得到函数的图象.【详解】由函数的图象可知,当时,单调递增,则,所以A选项和C选项错误;当时,先增,再减,然后再增,则先正,再负,然后再正,所以B选项错误.故选:D.【点睛】本题主要考查函数的单调性和导数的关系,意在考查学生对该知识的掌握水平,属于基础题.一般地,函数在某个区间可导,,则在这个区间是增函数;函数在某个区间可导,,则在这个区间是减函数.8、A【解析】根据两直线垂直的充要条件得到方程,解得即可;【详解】解:因为直线与直线,且,所以,解得;故选:A9、A【解析】∵且,∴,又,∴,故选A.10、D【解析】根据全面积得到正方体的棱长,再由勾股定理计算对角线.【详解】设正方体的棱长为,对角线长为,则有,解得,从而,解得.故选:D11、B【解析】由等差数列的通项公式判定选项A正确;利用等比数列的通项公式求出,即判定选项B错误;利用对数的运算和等差数列的定义判定选项C正确;利用错位相减法求和,即判定选项D正确.【详解】对于A:由条件可得,,即选项A正确;对于B:由条件可得,,即选项B错误;对于C:因为,所以,则,即数列是首项和公差均为的等差数列,即选项C正确;对于D:,设数列的前项和为,则,,上面两式相减可得,所以,即选项D正确.故选:B.12、B【解析】根据平面的性质分别判断充分性和必要性.【详解】充分性:若内有三个点到的距离相等,当这三个点不在一条直线上时,可得;当这三个点在一条直线上时,则、平行或相交,故充分性不成立;必要性:若,则内每个点到的距离相等,故必要性成立,所以“内有三个点到的距离相等”是“”的必要不充分条件.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、,【解析】根据全称命题量词的否定即可得出结果.【详解】命题“”的否定是“,”故答案为:14、【解析】化成标准形式,结合焦点定义即可求解.【详解】由,得,故抛物线的焦点坐标为故答案为:15、②③④【解析】由抛物线过点可得抛物线的方程,求出焦点的坐标及准线方程,由抛物线的性质可判断①;求出直线的方程与抛物线联立切线的坐标,进而求出三角形的面积,判断②;设直线方程为y-1=k(x-1),与y2=x联立求得斜率,进而可得在处的切线方程,从而判断③;设直线的方程为抛物线联立求出的坐标,同理求出的坐标,进而求出直线的斜率,从而可判断④【详解】解:由抛物线过点,所以,所以,所以抛物线的方程为:;可得抛物线的焦点的坐标为:,,准线方程为:,对于①,由抛物线的性质可得到焦点的距离为,故①错误;对于②,可得直线的斜率,所以直线的方程为:,代入抛物线的方程可得:,解得,所以,故②正确;对于③,依题意斜率存在,设直线方程为y-1=k(x-1),与y2=x联立,得:ky2-y+1-k=0,=1-4k(1-k)=0,4k2-4k+1=0,解得k=,所以切线方程为x-2y+1=0,故③正确;对于④,设直线的方程为:,与抛物线联立可得,所以,所以,代入直线中可得,即,,直线的方程为:,代入抛物线的方程,可得,代入直线的方程可得,所以,,所以为定值,故④正确故答案为:②③④.16、36【解析】根据方向向量和平面法向量的定义即可得出,然后即可得出,然后求出a,b的值,进而求出5a+b的值【详解】∵l⊥α,∴,∴,解得,∴故答案为:36三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递减,在单调递增;(2)见解析.【解析】(1)求f(x)导数,讨论导数的正负即可求其单调性;(2)由于,则,只需证明,构造函数,证明其最小值大于0即可.【小问1详解】时,,当时,,∴,当时,,∴,∴在单调递减,在单调递增;【小问2详解】由于,∴,∴只需证明,令,则,∴在上为增函数,而,∴在上有唯一零点,且,当时,,g(x)单调递减,当时,,g(x)单调递增,∴的最小值为,由,得,则,∴,当且仅当时取等号,而,∴,∴,即,∴当时,.【点睛】本题考察了利用导数研究函数的单调性,也考察了利用导数研究函数的最值,解题过程中设计到隐零点的问题,需要掌握隐零点处理问题的常见思路和方法.18、(1)(2)(3)【解析】(1)由题意直接写出基本事件即可得出答案.(2)样本空间一共有个基本事件,由(1)可得答案.(3)列出“点数之和为7”的基本事件,从而可得答案.【小问1详解】“同时抛掷两颗骰子”的样本空间是{1,2,…,6;1,2,…,6},其中i、j分别是抛掷第一颗与第二颗骰子所得的点数.将“出现两个1点”这个事件用A表示,则事件A就是子集.【小问2详解】样本空间一共有个基本事件,它们是等可能的,从而“出现两个1点”的概率为.小问3详解】将“点数之和为7”这个事件用B表示,则{,,,,,},事件B共有6个基本事件,从而“点数之和为7”的概率为.19、(1)a=2,(2)【解析】(1)由题意可得a=2,,求出,从而可求得椭圆方程,(2)由题意可求出的坐标,则可求出直线PQ的方程,然后将直线方程与椭圆方程联立,消去,利用根与系数的关系,求出的值,从而可求出的值【小问1详解】由椭圆定义可得2a=4,所以a=2,又因点在椭圆C上,所以,解得:,所以a的值为2,椭圆C的方程为【小问2详解】由椭圆的方程可得,,,所以,所以直线PQ的方程为,设,,由可得,所以,,所以,所以20、(1)(2)【解析】(1)由抛物线的定义可得结论;(2)设,得PA的两点式方程为,由在抛物线上,化简直线方程为,然后由圆心到切线的距离等于半径得出的关系式,并利用得出点满足的等式,同理设得方程,最后由直线方程的定义可得直线方程【小问1详解】由题意得动点M到点的距离等于到直线的距离,所以曲线C是以为焦点,为准线的抛物线.设,则,于是C的方程为.【小问2详解】由(1)可知,设,PA的两点式方程为.由,,可得.因为PA与D相切,所以,整理得.因为,可得.设,同理可得于是直线AB的方程为.21、(1)(2)【解析】(1)利用判别式可求的取值范围,注意就是否为零分类讨论;(2)根据题设可得真或真,后者可用参变分离求出的取值范围,结合(1)可求的取值范围.【小问1详解】当p为真命题时,当时,不等式显然成立;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论