2025届天津市和平区天津一中数学高二上期末教学质量检测试题含解析_第1页
2025届天津市和平区天津一中数学高二上期末教学质量检测试题含解析_第2页
2025届天津市和平区天津一中数学高二上期末教学质量检测试题含解析_第3页
2025届天津市和平区天津一中数学高二上期末教学质量检测试题含解析_第4页
2025届天津市和平区天津一中数学高二上期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届天津市和平区天津一中数学高二上期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中偶数的个数为()A.24 B.18C.12 D.62.在中,、、所对的边分别为、、,若,,,则()A. B.C. D.3.已知某班有学生48人,为了解该班学生视力情况,现将所有学生随机编号,用系统抽样的方法抽取一个容量为4的样本已知3号,15号,39号学生在样本中,则样本中另外一个学生的编号是()A.26 B.27C.28 D.294.对于实数a,b,c,下列命题为真命题的是()A.若,则 B.若,则C.若,则 D.若,则5.已知双曲线C:的渐近线方程是,则m=()A.3 B.6C.9 D.6.已知,则条件“”是条件“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件.7.已知双曲线,过左焦点且与轴垂直的直线与双曲线交于、两点,若弦的长恰等于实铀的长,则双曲线的离心率为()A. B.C. D.8.在空间四边形OABC中,,,,点M在线段OA上,且,N为BC中点,则等于()A. B.C. D.9.抛物线的准线方程是()A. B.C. D.10.方程表示的曲线是()A.一个椭圆和一个点 B.一个双曲线的右支和一条直线C.一个椭圆一部分和一条直线 D.一个椭圆11.已知F为椭圆的右焦点,A为C的右顶点,B为C上的点,且垂直于x轴.若直线AB的斜率为,则椭圆C的离心率为()A. B.C. D.12.数列中,满足,,设,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图,则a=______________14.已知抛物线C的方程为:,F为抛物线C的焦点,倾斜角为的直线过点F交抛物线C于A、B两点,则线段AB的长为________15.在数列中,若,则该数列的通项公式__________16.已知直线:和:,且,则实数__________,两直线与之间的距离为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某公司从2020年初起生产某种高科技产品,初始投入资金为1000万元,到年底资金增长50%.预计以后每年资金增长率与第一年相同,但每年年底公司要扣除消费资金x万元,余下资金再投入下一年的生产.设第n年年底扣除消费资金后的剩余资金为万元.(1)用x表示,,并写出与的关系式;.(2)若企业希望经过5年后,使企业剩余资金达3000万元,试确定每年年底扣除的消费资金x的值(精确到万元).18.(12分)已知双曲线中心在原点,离心率为2,一个焦点(1)求双曲线方程;(2)设Q是双曲线上一点,且过点F、Q的直线l与y轴交于点M,若,求直线l的方程19.(12分)设曲线在点(1,0)处的切线方程为.(1)求a,b的值;(2)求证:;(3)当,求a的取值范围.20.(12分)在平面直角坐标系xOy中,圆O以原点为圆心,且经过点.(1)求圆O的方程;(2)若直线与圆O交于两点A,B,求弦长.21.(12分)如图所示,在直三棱柱中,是等腰直角三角形,(1)证明:;(2)若点E是棱的中点,求平面与平面所成锐二面角的余弦值22.(10分)已知函数(1)解不等式;(2)若不等式对恒成立,求实数m的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意,结合计数原理中的分步计算,以及排列组合公式,即可求解.【详解】根据题意,要使组成无重复数字的三位数为偶数,则从0,2中选一个数字为个位数,有种可能,从1,3,5中选两个数字为十位数和百位数,有种可能,故这个无重复数字的三位数为偶数的个数为.故选:C.2、B【解析】利用正弦定理,以及大边对大角,结合正弦定理,即可求得.【详解】根据题意,由正弦定理,可得:,解得,故可得或,由,可得,故故选:B.3、B【解析】由系统抽样可知抽取一个容量为4的样本时,将48人按顺序平均分为4组,由已知编号可得所求的学生来自第三组,设其编号为,则,进而求解即可【详解】由系统抽样可知,抽取一个容量为4的样本时,将48人分为4组,第一组编号为1号至12号;第二组编号为13号至24号;第三组编号为25号至36号;第四组编号为37号至48号,故所求的学生来自第三组,设其编号为,则,所以,故选:B【点睛】本题考查系统抽样的编号,属于基础题4、D【解析】判断不等式的真假,就是要考虑在不等式的变形过程中是否遵守不等式变形的规则.【详解】若,令,,,,,故A错误;若,令c=0,则,故B错误;若,令a=-1,b=-2,,,故C错误;∵,故,根据不等式运算规则,在不等式的两边同时乘以或除以一个正数,不等式的方向不变,故D正确.故选:D.5、C【解析】根据双曲线的渐近线求得的值.【详解】依题意可知,双曲线的渐近线为,所以.故选:C6、A【解析】若命题,则p是q的充分不必要条件,q是p的必要不充分条件【详解】因为,所以,所以.故选:A7、B【解析】求出,进而求出,之间的关系,即可求解结论【详解】解:由题意,直线方程为:,其中,因此,设,,,,解得,得,,弦的长恰等于实轴的长,,,故选:B8、B【解析】由题意结合图形,直接利用,求出,然后即可解答.【详解】解:因为空间四边形OABC如图,,,,点M在线段OA上,且,N为BC的中点,所以.所以.故选:B.9、D【解析】将抛物线的方程化为标准方程,可得出该抛物线的准线方程.【详解】抛物线的标准方程为,则,可得,因此,该抛物线的准线方程为.故选:D.10、C【解析】由可得,或,再由方程判断所表示的曲线.【详解】由可得,或,即或,则该方程表示一个椭圆的一部分和一条直线.故选:C11、D【解析】根据题意表示出点的坐标,再由直线AB的斜率为,列方程可求出椭圆的离心率【详解】由题意得,,当时,,得,由题意可得点在第一象限,所以,因为直线AB的斜率为,所以,化简得,所以,,得(舍去),或,所以离心率,故选:D12、C【解析】由递推公式可归纳得,由此可以求出的值【详解】因为,,所以,,,因此故选C【点睛】本题主要考查利用数列的递推式求值和归纳推理思想的应用,意在考查学生合情推理的意识和数学建模能力二、填空题:本题共4小题,每小题5分,共20分。13、3##【解析】由频率之和等于1,即矩形面积之和为1可得.【详解】由题知,解得.故答案为:0.314、8【解析】根据给定条件求出抛物线C的焦点坐标,准线方程,再求出点A,B的横坐标和即可计算作答.【详解】抛物线C:焦点,准线方程为,依题意,直线l的方程为:,由消去x并整理得:,设,则,于是得,所以线段AB的长为8.故答案为:815、【解析】由已知可得数列是以为首项,3为公比的等比数列,结合等比数列通项公式即可得解.【详解】解:由在数列中,若,则数列是以为首项,为公比的等比数列,由等比数列通项公式可得,故答案为:.【点睛】本题考查了等比数列通项公式的求法,重点考查了运算能力,属基础题.16、①.-4;②.2【解析】根据两直线平行斜率相等求解参数即可;运用两平行线间的距离公式计算两直线之间的距离可得出答案.【详解】解:直线和,,,解得;∴两直线与间的距离是:.故答案为:;2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)x=348【解析】(1)根据题意直接得,,进而归纳出;(2)由(1)可得,利用等比数列的求和公式可得,结合即可计算出d的值.【小问1详解】由题意知,,,;【小问2详解】由(1)可得,,则,所以,即,当时,,解得,当时,万元.故该企业每年年底扣除消费资金为348万元时,5年后企业剩余资金为3000万元.18、(1)(2)或【解析】(1)依题意设所求的双曲线方程为,则,再根据离心率求出,即可求出,从而得到双曲线方程;(2)依题意可得直线的斜率存在,设,即可得到的坐标,依题意可得或,分两种情况分别求出的坐标,再根据的双曲线上,代入曲线方程,即可求出,即可得解;【小问1详解】解:设所求的双曲线方程为(,),则,,∴,又则,∴所求的双曲线方程为【小问2详解】解:∵直线l与y轴相交于M且过焦点,∴l的斜率一定存在,则设.令得,∵且M、Q、F共线于l,∴或当时,,,∴,∵Q在双曲线上,∴,∴,当时,,代入双曲线可得:,∴综上所求直线l的方程为:或19、(1)(2)证明见解析(3)【解析】(1)求导,根据导数的几何意义,令x=1处的切线的斜率等1,结合,即可求得a和b的值;(2)利用(1)的结论,构造函数,求求导数,判断单调性,求出最小值即可证明;(3)根据条件构造函数,求出其导数,分类讨论导数的值的情况,根据单调性,判断函数的最小值情况,即可求得答案.【小问1详解】由题意知:,因为曲线在点(1,0)处的切线方程为,故,即;【小问2详解】证明:由(1)知:,令,则,当时,,单调递减,当时,,单调递增,所以当时,取得极小值,也即最小值,最小值为,故,即成立;【小问3详解】当,即,(),设,(),则,当时,由得,此时,此时在时单调递增,,适合题意;当时,,此时在时单调递增,,适合题意;当时,,此时,此时在时单调递增,,适合题意;当时,,此时在内,,在内,,故,显然时,,不满足当恒成立,综上述:.20、(1)(2)【解析】(1)根据两点距离公式即可求半径,进而得圆方程;(2)根据直线与圆的弦长公式即可求解【小问1详解】由,所以圆O的方程为;【小问2详解】由点O到直线的距离为所以弦长21、(1)证明见解析(2)【解析】(1)根据线面垂直的判定定理证出平面,即可证得;(2)以A为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,根据二面角的向量公式即可求出【小问1详解】如图,连接,由已知可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论