重庆市江津、巴县、长寿等七校联盟2025届高一数学第一学期期末统考模拟试题含解析_第1页
重庆市江津、巴县、长寿等七校联盟2025届高一数学第一学期期末统考模拟试题含解析_第2页
重庆市江津、巴县、长寿等七校联盟2025届高一数学第一学期期末统考模拟试题含解析_第3页
重庆市江津、巴县、长寿等七校联盟2025届高一数学第一学期期末统考模拟试题含解析_第4页
重庆市江津、巴县、长寿等七校联盟2025届高一数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市江津、巴县、长寿等七校联盟2025届高一数学第一学期期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.定义在R上的函数满足,且当时,,,若任给,存在,使得,则实数a的取值范围为().A. B.C. D.2.设,则a,b,c的大小关系是()A. B.C. D.3.已知是函数的反函数,则的值为()A.0 B.1C.10 D.1004.已知,则()A. B.C.5 D.-55.已知集合,集合,则()A. B.C. D.6.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是()A.x1 B.x2C.x3 D.x47.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式).A.2寸 B.3寸C.4寸 D.5寸8.酒驾是严重危害交通安全的违法行为.根据国家有关规定:驾驶人血液中的酒精含量大于(或等于)毫克/毫升,小于毫克/毫升的情况下驾驶机动车属于饮酒驾车;含量大于(或等于)毫克/毫升的情况下驾驶机动车属于醉酒驾车.假设某驾驶员一天晚上点钟喝了一定量的酒后,其血液中酒精含量上升到毫克/毫升.如果在停止喝酒后,他血液中酒精含量以每小时的速度减少,则他次日上午最早()点(结果取整数)开车才不构成酒驾.(参考数据:,)A. B.C. D.9.设一个半径为r的球的球心为空间直角坐标系的原点O,球面上有两个点A,B,其坐标分别为(1,2,2),(2,-2,1),则()A. B.C. D.10.已知函数f(x)=有两不同的零点,则的取值范围是()A.(−∞,0) B.(0,+∞)C.(−1,0) D.(0,1)二、填空题:本大题共6小题,每小题5分,共30分。11.若,,,则的最小值为______.12.已知为三角形的边的中点,点满足,则实数的值为_______13.已知函数,设,,若成立,则实数的最大值是_______14.函数的单调递增区间是___________.15.函数的图象必过定点___________16.已知A(3,0),B(0,4),直线AB上一动点P(x,y),则xy的最大值是___.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在直三棱柱中,,,,,点是中点()求证:平面()求直线与平面所成角的正切值18.已知函数.(1)求的值;(2)若函数在区间是单调递增函数,求实数的取值范围;(3)若关于的方程在区间内有两个实数根,记,求实数的取值范围.19.假设你家订了一份报纸,送报人可能在早上6点—8点之间把报纸送到你家,你每天离家去工作的时间在早上7点—9点之间.问:离家前不能看到报纸(称事件)的概率是多少?(须有过程)20.设函数f(1)求函数fx(2)求函数fx(3)求函数fx在闭区间0,π221.设函数,(1)求函数的值域;(2)设函数,若对,,,求正实数a的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】求出在,上的值域,利用的性质得出在,上的值域,再求出在,上的值域,根据题意得出两值域的包含关系,从而解出的范围【详解】解:当时,,可得在,上单调递减,在上单调递增,在,上的值域为,,在上的值域为,,在上的值域为,,,,在上的值域为,,当时,为增函数,在,上的值域为,,,解得;当时,为减函数,在,上的值域为,,,解得;当时,为常数函数,值域为,不符合题意;综上,的范围是或故选:【点睛】本题考查了分段函数的值域计算,集合的包含关系,对于不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数,(1)若,,总有成立,故;(2)若,,有成立,故;(3)若,,有成立,故;(4)若,,有,则值域是值域的子集2、C【解析】比较a、b、c与0和1的大小即可判断它们之间的大小.【详解】,,,故故选:C.3、A【解析】根据给定条件求出的解析式,再代入求函数值作答.【详解】因是函数的反函数,则,,所以的值为0.故选:A4、C【解析】令,代入直接计算即可.【详解】令,即,则,故选:C.5、C【解析】解不等式求出集合A中的x的范围,然后求出A的补集,再与集合B求交集即可.【详解】集合,则集合,,故选:C.【点睛】本题考查了集合的基本运算,属于基础题.6、C【解析】观察图象可知:点x3的附近两旁的函数值都为负值,∴点x3不能用二分法求,故选C.7、B【解析】根据题意可得平地降雨量,故选B.考点:1.实际应用问题;2.圆台的体积.8、D【解析】根据题意可得不等式,解不等式可求得,由此可得结论.【详解】假设经过小时后,驾驶员开车才不构成酒驾,则,即,,则,,次日上午最早点,该驾驶员开车才不构成酒驾.故选:D.9、C【解析】由已知求得球的半径,再由空间中两点间的距离公式求得|AB|,则答案可求【详解】∵由已知可得r,而|AB|,∴|AB|r故选C【点睛】本题考查空间中两点间距离公式的应用,是基础题10、A【解析】函数f(x)=有两不同的零点,可以转化为直线与函数的图象有两个不同的交点,构造不等式即可求得的取值范围.【详解】由题可知方程有两个不同的实数根,则直线与函数的图象有两个不同的交点,作出与的大致图象如下:不妨设,由图可知,,整理得,由基本不等式得,(当且仅当时等号成立)又,所以,解得,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用基本不等式求出即可.【详解】解:若,,则,当且仅当时,取等号则的最小值为.故答案为:.【点睛】本题考查了基本不等式的应用,属于基础题.12、【解析】根据向量减法的几何意义及向量的数乘便可由得出,再由D为△ABC的边BC的中点及向量加法的平行四边形法则即可得出点D为AP的中点,从而便可得出,这样便可得出λ的值【详解】=,所以,D为△ABC的边BC中点,∴∴如图,D为AP的中点;∴,又,所以-2.故答案为-2.【点睛】本题考查向量减法的几何意义,向量的数乘运算,及向量数乘的几何意义,向量加法的平行四边形法则,共线向量基本定理,属于中档题.13、【解析】设不等式的解集为,从而得出韦达定理,由可得,要使,即不等式的解集为,则可得,以及是方程的两个根,再得出其韦达定理,比较韦达定理可得出,从而求出与的关系,代入,得出答案.【详解】,则由题意设集合,即不等式的解集为所以是方程的两个不等实数根则,则由可得,由,所以不等式的解集为所以是方程,即的两个不等实数根,所以故,,则,则,则由,即,即,解得综上可得,所以的最大值为故答案:14、##【解析】求出函数的定义域,利用复合函数法可求得函数的单调递增区间.【详解】由得,解得,所以函数的定义域为.设内层函数,对称轴方程为,抛物线开口向下,函数在区间上单调递增,在区间上单调递减,外层函数为减函数,所以函数的单调递增区间为.故答案为:.15、【解析】f(x)=k(x-1)-ax-1,x=1时,y=f(x)=-1,∴图象必过定点(1,-1).16、3【解析】直线AB的方程为+=1,又∵+≥2,即2≤1,当x>0,y>0时,当且仅当=,即x=,y=2时取等号,∴xy≤3,则xy的最大值是3.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2).【解析】(1)设BC1与CB1交于点O,连接OD,利用三角形中位线性质,证明OD∥AC1,利用线面平行的判定,可得AC1∥平面CDB1(2)过D作DE⊥BC,连结B1E,则DE⊥平面BCC1B1,于是∠DB1E为直线DB1与平面BCC1B1所成的角.利用勾股定理求出DE,B1E,计算tan∠DB1E【详解】(1)证明:设BC1与CB1交于点O,则O为BC1的中点在△ABC1中,连接OD,∵D,O分别为AB,BC1的中点,∴OD为△ABC1的中位线,∴OD∥AC1,又AC1⊄平面CDB1,OD⊂平面CDB1,∴AC1∥平面CDB1(2)过D作DE⊥BC,连结B1E,则DE⊥平面BCC1B1,∴∠DB1E为直线DB1与平面BCC1B1所成的角∵D是AB的中点,∴DE,BE,∴B1E∴tan∠DB1E【点晴】本题考查了线面平行的判定,线面角的计算,属于中档题18、(1)(2)(3)【解析】分析:(1)先根据二倍角公式以及配角公式化为基本三角函数,再代入求值;(2)根据正弦函数性质确定单调性递增区间,再根据区间之间包含关系列不等式,解得实数的取值范围;(3)先根据正弦函数图像确定a的取值范围,再根据对称性得,最后代入求实数的取值范围.详解:(1)∵∴(2)由,得,∴在区间上是增函数∴当时,在区间上是增函数若函数在区间上是单调递增函数,则∴,解得(3)方程在区间内有两实数根等价于直线与曲线有两个交点.∵当时,由(2)知在上是增函数,在上是减函数,且,,,∴即实数的取值范围是∵函数的图像关于对称∴,∴∴实数的取值范围为.点睛:函数性质(1).(2)周期(3)由求对称轴,最大值对应自变量满足,最小值对应自变量满足,(4)由求增区间;由求减区间19、.【解析】设送报人到达的时间为X,小王离家去工作的时间为Y,(X,Y)可以看成平面中的点,试验的全部结果所构成的区域为Ω={(x,y)|6≤X≤8,7≤Y≤9}一个正方形区域,求出其面积,事件A表示小王离家前不能看到报纸,所构成的区域为A={(X,Y)|6≤X≤8,7≤Y≤9,X>Y}

求出其面积,根据几何概型的概率公式解之即可;试题解析:如图,设送报人到达的时间为,小王离家去工作的时间为.(,)可以看成平面中的点,试验的全部结果所构成的区域为一个正方形区域,面积为,事件表示小王离家前不能看到报纸,所构成的区域为即图中的阴影部分,面积为.这是一个几何概型,所以.答:小王离家前不能看到报纸的概率是0.125.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率20、(1)π(2)π3+kπ,(3)fx在0,π2内的最大值为【解析】(1)利用三角恒等变换化简可得fx=sin2x-π(2)令π2+2k≤2x-π6≤3π2+2k,k∈Z(3)由0≤x≤π2,可得-π6≤2x-π6≤5π【小问1详解】f(x)=sin2x-cos2x+2cosxcos=-cos2x+2cosxcos=-cos2x+1+cos2x2+=32sin2x-12cos2x=sin2x-π函数f(x)的最小正周期为T=2π2=【小问2详解】令π2+2k≤2x-π6≤3π2+2k解得π3+k≤x≤5π6+k,函数f(x)的单调递减间为π3+kπ,【小问3详解】因为0≤x≤π2,-π6≤2x-π6≤当2x-π6=π2时,即x=π3时,f(x21、(1);

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论