版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.4线段的垂直平分线第2课时
线段的垂直平分线的尺规作图学习目标1.能用尺规完成基本作图:过一点作已知直线的垂线;2.在尺规作图中,了解作图的道理,保留作图的痕迹;3.利用过一点作已知直线的垂线解决实际问题,如解决最短路径问题等.作出线段AB的垂直平分线CD.因为CD与线段AB的交点E就是线段AB的中点,所以可以用作线段垂直平分线的方法找出线段的中点.实验与探究探究一、如何找一条线段的中点?已知线段AB,找出线段的中点E.ABCDE探究二、如何过一点P作已知直线l的垂线呢?由于两点确定一条直线,因此我们可以通过在已知直线上作线段的垂直平分线来找出垂线上的另一点,从而确定已知直线的垂线.实验与探究探究二、如何过一点P作已知直线l的垂线呢?(1)点P在直线l上作法:①在直线l
上点P
的两旁分别截取线段PA,PB,使PA=PB;
③过点C,P作直线CP,则直线CP为所求作的直线.PlABC实验与探究探究二、如何过一点P作已知直线l的垂线呢?(2)点P在直线l外P作法:①任意取一点K,使点K和点P在l两旁;②以点P为圆心,PK长为半径作弧,交l于点D和E;
④作直线PF.
直线PF即为所求垂线.KDE实验与探究F合作交流草地河BA牧马人营地问题一:牧马人从A处回到B处休息,怎么走可使路径最短?两点之间,线段最短草地河BA牧马人营地lD问题二:牧马人从A处到河边l饮马,怎么走可使路径最短?连接直线外一点与直线上各点的所有线段中,垂线段最短“牧马饮水问题1”:如图,牧马人从A地出发,先到河边l某处饮马,再穿过小河回到B处,牧马人到河边的什么地方饮马,可使所走的路径最短?请画出最短路径.草地河ABlCC′由“两点之间,线段最短”,知AC+BC<AC′+BC′.所以最短路径是AB.当点A、B位于直线l的异侧时,连接AB,与直线l的交点,即为直线l上到A、B距离之和最短的点.AC+CB=AC+CB1=AB1,AC1+C1B=AC1+C1B1>AB1.所以最短路径是AC+BC.草地河BAC1CB1l“牧马饮水问题2”:如图,牧马人从A地出发,先到河边某处饮马,再回到B处,牧马人到河边的什么地方饮马,可使所走的路径最短?请画出最短路径.当点A、B位于直线
l的同侧时,作点B关于直线l的对称点B1,连接AB1,与直线l的交点,即为直线l上到A、B距离之和最短的点.C最短路径问题AB(1)两点(3)两点一线(异侧)(4)两点一线(同侧)(2)一点一线AlABlAlBCCB′1.如图,A、B、C三个居民区的位置成三角形,现决定在这三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC,BC两边高线的交点处B.AC,BC两边中线的交点处C.AB,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处随堂训练【解析】根据线段垂直平分线的性质,在线段垂直平分线上的点到线段两个端点的距离相等,可知超市应该建在AB,BC两边垂直平分线的交点处.C随堂训练2.如图,四边形ABCD与四边形A′B′C′D′关于某直线对称,请你作出它们的对称轴.ABCDA′B′C′D′EF解:如图,直线EF即为所求对称轴.分析:连接任意两个对应点作其垂直平分线即是.3.如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点,并说明理由.··CABa作法:作点B关于直线
a的对称点点C,连接AC交直线a于点D,则点D为建抽水站的位置.随堂训练·D3.如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点,并说明理由.··CABa随堂训练·D解:在a
上另外任取一点E,连接AE,
CE,BE,BD,AD.易得DB=DC,EB=EC,所以AD+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中班户外展示课程设计
- 中国银行理财课程设计
- 土木工程在线课程设计
- 基于arduino简单课程设计
- 作文暑假班课程设计
- 台词课程设计分享
- python课程设计任务书
- 台湾小学课程设计模版
- 中国花艺培训课程设计
- 一年级数学(上)计算题专项练习集锦
- 人教新课标版中考复习市公开课特等奖市赛课微课一等奖课件
- 保温护理在手术室
- 2024年福建省厦门市翔安区残疾人联合会招聘残疾人工作联络员29人历年高频考题难、易错点模拟试题(共500题)附带答案详解
- 工程设计管理岗面试问题
- 学术交流英语(学术写作)智慧树知到期末考试答案2024年
- 光伏电站冬季安全生产培训
- 2024中国邮政重庆分公司招聘笔试参考题库含答案解析
- 分销渠道案例分析之娃哈哈
- 第6课 家乡的非遗-保护非物质文化遗产
- 小学生飞机知识科普
- 道德与法治新课标解读
评论
0/150
提交评论