![2025届四川省眉山市彭山区一中高二上数学期末综合测试模拟试题含解析_第1页](http://file4.renrendoc.com/view8/M02/13/00/wKhkGWcYIz2Ac8AWAAIUYdggTYU656.jpg)
![2025届四川省眉山市彭山区一中高二上数学期末综合测试模拟试题含解析_第2页](http://file4.renrendoc.com/view8/M02/13/00/wKhkGWcYIz2Ac8AWAAIUYdggTYU6562.jpg)
![2025届四川省眉山市彭山区一中高二上数学期末综合测试模拟试题含解析_第3页](http://file4.renrendoc.com/view8/M02/13/00/wKhkGWcYIz2Ac8AWAAIUYdggTYU6563.jpg)
![2025届四川省眉山市彭山区一中高二上数学期末综合测试模拟试题含解析_第4页](http://file4.renrendoc.com/view8/M02/13/00/wKhkGWcYIz2Ac8AWAAIUYdggTYU6564.jpg)
![2025届四川省眉山市彭山区一中高二上数学期末综合测试模拟试题含解析_第5页](http://file4.renrendoc.com/view8/M02/13/00/wKhkGWcYIz2Ac8AWAAIUYdggTYU6565.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届四川省眉山市彭山区一中高二上数学期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是双曲线与圆在第一象限的交点,,分别是双曲线的左,右焦点,若,则双曲线的离心率为()A. B.C. D.2.椭圆焦距为()A. B.8C.4 D.3.已知直线l1:y=x+2与l2:2ax+y﹣1=0垂直,则a=()A. B.C.﹣1 D.14.设正实数,满足(其中为正常数),若的最大值为3,则()A.3 B.C. D.5.德国数学家高斯是近代数学奠基者之一,有“数学王子”之称,在历史上有很大的影响.他幼年时就表现出超人的数学天才,10岁时,他在进行的求和运算时,就提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法.已知数列,则()A.96 B.97C.98 D.996.已知直线在两个坐标轴上的截距之和为7,则实数m的值为()A.2 B.3C.4 D.57.已知函数在处取得极值,则的极大值为()A. B.C. D.8.若,则图像上的点的切线的倾斜角满足()A.一定为锐角 B.一定为钝角C.可能为 D.可能为直角9.为了调查全国人口的寿命,抽查了11个省(市)的2500名城镇居民,这2500名城镇居民的寿命的全体是()A.总体 B.个体C.样本 D.样本容量10.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第7项为()A.101 B.99C.95 D.9111.已知锐角的内角A,B,C的对边分别为a,b,c,若向量,,,则的最小值为()A. B.C. D.12.在正项等比数列中,和为方程的两根,则等于()A.8 B.10C.16 D.32二、填空题:本题共4小题,每小题5分,共20分。13.在下列所示电路图中,下列说法正确的是____(填序号)(1)如图①所示,开关A闭合是灯泡B亮的充分不必要条件;(2)如图②所示,开关A闭合是灯泡B亮的必要不充分条件;(3)如图③所示,开关A闭合是灯泡B亮的充要条件;(4)如图④所示,开关A闭合是灯泡B亮的必要不充分条件14.已知函数在点处的切线为直线l,则l与坐标轴围成的三角形面积为___________.15.若数列满足,,则__________16.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数.用一点(或一个小石子)代表1,两点(或两个小石子)代表2,三点(或三个小石子)代表3,…他们研究了各种平面数(包括三角形数、正方形数、长方形数、五边形数、六边形数等等)和立体数(包括立方数、棱锥数等等).如前四个四棱锥数为第n个四棱锥数为1+4+9+…+n2=.中国古代也有类似的研究,如图的形状出现在南宋数学家杨辉所著的《详解九章算法•商功》中,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球,…若一个“三角垛”共有20层,则第6层有____个球,这个“三角垛”共有______个球三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,求的极值;(2)讨论的单调性18.(12分)如图,在四棱锥P-ABCD中,平面ABCD,,,,,.(1)证明:平面平面PAC;(2)求平面PCD与平面PAB夹角的余弦值.19.(12分)冬奥会的全称是冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在中国北京和张家口举行.为了弘扬奥林匹克精神,增强学生的冬奥会知识,广安市某中学校从全校随机抽取50名学生参加冬奥会知识竞赛,并根据这50名学生的竞赛成绩,绘制频率分布直方图(如图所示),其中样本数据分组区间(1)求频率分布直方图中a的值:(2)求这50名学生竞赛成绩的众数和中位数.(结果保留一位小数)20.(12分)已知某中学高二物化生组合学生的数学与物理的水平测试成绩抽样统计如下表:若抽取了名学生,成绩分为A(优秀),B(良好),C(及格)三个等级,设,分别表示数学成绩与物理成绩,例如:表中物理成绩为A等级的共有(人),数学成绩为B等级且物理成绩为C等级的共有8人,已知与均为A等级的概率是0.07(1)设在该样本中,数学成绩的优秀率是30%,求,的值;(2)已知,,求数学成绩为A等级的人数比C等级的人数多的概率21.(12分)如图,已知四棱台的上、下底面分别是边长为2和4的正方形,,且底面,点分别在棱、上·(1)若P是的中点,证明:;(2)若平面,二面角的余弦值为,求四面体的体积22.(10分)已知数列满足,().(1)证明:数列是等比数列,并求出数列的通项公式;(2)数列满足:(),求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先由双曲线定义与题中条件得到,,求出,,再由题意得到,即可根据勾股定理求出结果.【详解】解:根据双曲线定义:,,∴,∴,,,∴是圆的直径,∴,中,,得故选【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可,属于常考题型.2、A【解析】由题意椭圆的焦点在轴上,故,求解即可【详解】由题意,,故椭圆的焦点在轴上故焦距故选:A3、A【解析】利用两直线垂直斜率关系,即可求解.【详解】直线l1:y=x+2与l2:2ax+y﹣1=0垂直,.故选:A【点睛】本题考查两直线垂直间的关系,属于基础题.4、D【解析】由于,,为正数,且,所以利用基本不等式可求出结果【详解】解:因为正实数,满足(其中为正常数),所以,则,所以,所以故选:D.5、C【解析】令,利用倒序相加原理计算即可得出结果.【详解】令,,两式相加得:,∴,故选:C6、C【解析】求出直线方程在两坐标轴上的截距,列出方程,求出实数m的值.【详解】当时,,故不合题意,故,,令得:,令得:,故,解得:.故选:C7、B【解析】首先求出函数的导函数,依题意可得,即可求出参数的值,从而得到函数解析式,再根据导函数得到函数单调性,即可求出函数的极值点,从而求出函数的极大值;【详解】解:因为,所以,依题意可得,即,解得,所以定义域为,且,令,解得或,令解得,即在和上单调递增,在上单调递减,即在处取得极大值,在处取得极小值,所以;故选:B8、C【解析】求出导函数,判断导数的正负,从而得出结论【详解】,时,,递减,时,,递增,而,所以切线斜率可能为正数,也可能为负数,还可以为0,则倾斜角可为锐角,也可为钝角,还可以为,当时,斜率不存在,而存在,则不成立.故选:C9、C【解析】由样本的概念即知.【详解】由题意可知,这2500名城镇居民的寿命的全体是样本.10、C【解析】根据所给数列找到规律:两次后项减前项所得数列为公差为2的数列,进而反向确定原数列的第7项.【详解】根据所给定义,用数列的后一项减去前一项得到一个数列,得到的数列也用后一项减去前一项得到一个数列,即得到了一个等差数列,如图:故选:C.11、C【解析】由,得到,根据正弦、余弦定理定理化简得到,化简得到,再结合基本不等式,即可求解.【详解】由题意,向量,,因为,所以,可得,由正弦定理得,整理得,又由余弦定理,可得,因为,所以,由,所以,因为是锐角三角形,且,可得,解得,所以,所以,当且仅当,即时等号成立,故的最小值为.故选:C12、C【解析】根据和为方程两根,得到,然后再利用等比数列的性质求解.【详解】因为和为方程的两根,所以,又因为数列是等比数列,所以,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、(1)(2)(3)【解析】充分不必要条件是该条件成立时,可推出结果,但结果不一定需要该条件成立;必要条件是有结果必须有这一条件,但是有这一条件还不够;充要条件是条件和结果可以互推;条件和结果没有互推关系的是既不充分也不必要条件【详解】(1)开关闭合,灯泡亮;而灯泡亮时,开关不一定闭合,所以开关闭合是灯泡亮的充分不必要条件,选项(1)正确.(2)开关闭合,灯泡不一定亮;而灯泡亮时,开关必须闭合,所以开关闭合是灯泡亮的必要不充分条件,选项(2)正确.(3)开关闭合,灯泡亮;而灯泡亮时,开关必须闭合,所以开关闭合是灯泡亮的充要条件,选项(3)正确.(4)开关闭合,灯泡不一定亮;而灯泡亮时,开关不一定闭合,所以开关闭合是灯泡亮的既不充分也不必要条件,选项(4)错误.故答案为(1)(2)(3).14、【解析】先求出切线方程,分别得到直线与x、y轴交点,即可求出三角形的面积.【详解】由函数可得:函数,所以,.所以切线l:,即.令,得到;令,得到;所以l与坐标轴围成的三角形面积为.故答案为:.15、7【解析】根据递推公式,依次求得值.【详解】依题意,由,可知,故答案为:716、①.21②.1540【解析】根据题中给出的图形,结合题意找到各层球的数列与层数的关系,得到=,由此可求的值,以及前20层的总球数【详解】由题意可知,,故==,所==21,所以S20=a1+a2+a3+a4+⋯⋯+a20=(12+22+32+⋯⋯+202)+(1+2+3+⋯⋯+20)=×+×=1540故答案为:21;1540三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)极小值为,无极大值(2)答案见解析【解析】(1)求出导函数,由得增区间,得减区间,从而得极值;(2)求出导函数,分类讨论确定和解得单调性小问1详解】当时,,(x>0)则令,得,得,得,所以的单调递减区间为;单调递增区间为.所以的极小值为f(2)=,无极大值.【小问2详解】令则当时,在上单调递减.当时,,得,,得;,得在上单调递减,在上单调递增,综上所述,当时,在上单调递减.当时,在上单调递减,在上单调递增.18、(1)证明见解析(2)【解析】(1)过点C作于点H,由平面几何知识证明,然后由线面垂直的性质得线线垂直,从而得线面垂直,然后可得面面垂直;(2)建立如图所示的空间直角坐标系,用空间向量法求二面角【小问1详解】在梯形ABCD中,过点C作于点H.由,,,,可知,,,.所以,即,①因为平面ABCD,平面ABCD,所以,②由①②及,平面PAC,得平面PAC.又由平面PCD,所以平面平面PAC.【小问2详解】因为AB,AD,AP两两垂直,所以以A为原点,以AB,AD,AP所在的直线分别为x,y,z轴建立空间直角坐标系,可得A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,3),,.设平面PCD的法向量为,则,取,则,,则.平面PAB的一个法向量为,所以,所以平面PCD与平面PAB所成的锐二面角的余弦值为.19、(1)(2)众数;中位数【解析】(1)根据频率分布直方图矩形面积和为1列式即可;(2)根据众数即最高矩形中间值,中位数左右两边矩形面积各为0.5列式即可.【小问1详解】由,得【小问2详解】50名学生竞赛成绩的众数为设中位数为,则解得所以这50名学生竞赛成绩的中位数为76.420、(1),(2)【解析】(1)根据与均为A等级的概率是0.07,求得值,再根据数学成绩的优秀率是30%求得值,最后利用抽取的总人数求出值即可;(2)根据,,,写出满足条件得基本事件,找出其中的基本事件,利用古典概型的公式求出概率即可.【小问1详解】由题意知,解得,,解得,由已知得,解得.【小问2详解】由,,,可知,则试验的样本空间,共9个样本点其中包含的样本点有共4个,故所求概率21、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,利用空间向量的坐标运算知,即可证得结论;(2)利用空间向量结合已知的面面角余弦值可求得,再利用线面平行的已知条件求得,再将四面体视为以为底面的三棱锥,利用锥体的体积公式即可得解.【小问1详解】以为坐标原点,,,所在直线分别为,,轴建立空间直角坐标系,则,,,,设,其中,,若是的中点,则,,,于是,∴,即【小问2详解】由题设知,,,是平面内的两个不共线向量设是平面的一个法向量,则,取,得又平面的一个法向量是,∴,而二面角的余弦值为,因此,解得或(舍去),此时设,而,由此得点,,∵平面,且平面的一个法向量是,∴,即,解得,从而将四面体视为以为底面的三棱锥,则其高,故四面体的体积【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度浙江省建筑企业聘用合同
- 2025年度服装品牌销售提成及品牌推广合同
- 二零二五年度家庭信托遗产继承分配管理合同
- 2025年度财务审计与内部控制顾问服务合同
- 2025年度空调设备买卖及远程监控维护服务协议
- 2025年度事业单位聘用合同解除及竞业限制条款协议
- 2025年度蔬菜产业扶贫项目合作合同模板
- 二零二五年度考研辅导机构知识产权保护合同
- 2025年度钢结构拆除工程现场安全管理与应急预案合同
- 二零二五年度商铺租赁合同终止及商业保险责任划分协议
- 《财务管理学(第10版)》课件 第5、6章 长期筹资方式、资本结构决策
- 房屋永久居住权合同模板
- 医院纳入定点后使用医疗保障基金的预测性分析报告
- 初中英语不规则动词表(译林版-中英)
- 2024年3月四川省公务员考试面试题及参考答案
- 新生儿黄疸早期识别课件
- 医药营销团队建设与管理
- 二年级数学上册口算题100道(全册完整)
- 冷轧工程专业词汇汇编注音版
- 小升初幼升小择校毕业升学儿童简历
- 第一单元(金融知识进课堂)课件
评论
0/150
提交评论