内蒙古锦山蒙古族中学2025届数学高二上期末检测模拟试题含解析_第1页
内蒙古锦山蒙古族中学2025届数学高二上期末检测模拟试题含解析_第2页
内蒙古锦山蒙古族中学2025届数学高二上期末检测模拟试题含解析_第3页
内蒙古锦山蒙古族中学2025届数学高二上期末检测模拟试题含解析_第4页
内蒙古锦山蒙古族中学2025届数学高二上期末检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古锦山蒙古族中学2025届数学高二上期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在空间直角坐标系中,点关于轴的对称点为点,则点到直线的距离为()A B.C. D.62.某制药厂为了检验某种疫苗预防的作用,把名使用疫苗的人与另外名未使用疫苗的人一年中的记录作比较,提出假设:“这种疫苗不能起到预防的作用”,利用列联表计算得,经查对临界值表知.则下列结论中,正确的结论是()A.若某人未使用该疫苗,则他在一年中有的可能性生病B.这种疫苗预防的有效率为C.在犯错误的概率不超过的前提下认为“这种疫苗能起到预防的作用”D.有的把握认为这种疫苗不能起到预防生病的作用3.设双曲线:的左、右焦点分别为、,P为C上一点,且,,则双曲线的渐近线方程为()A. B.C. D.4.直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M,N两点,若,则k的取值范围是()A. B.(-∞,]∪[0,+∞)C. D.5.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子研究数,他们根据沙粒和石子所排列的形状把数分成许多类,若:三角形数、、、、,正方形数、、、、等等.如图所示为正五边形数,将五边形数按从小到大的顺序排列成数列,则此数列的第4项为()A. B.C. D.6.在空间直角坐标系中,点关于轴对称的点的坐标为()A. B.C. D.7.某双曲线的一条渐近方程为,且焦点为,则该双曲线的方程是()A. B.C. D.8.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()A. B.C. D.9.在矩形中,,在该矩形内任取一点M,则事件“”发生的概率为()A. B.C. D.10.在数列中,,,则()A.985 B.1035C.2020 D.207011.边长为的正方形沿对角线折成直二面角,、分别为、的中点,是正方形的中心,则的大小为()A. B.C. D.12.已知点在抛物线上,则点到抛物线焦点的距离为()A.1 B.2C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.若函数在区间上单调递减,则实数的取值范围是____________.14.如图,在等腰直角中,,为半圆弧上异于,的动点,当半圆弧绕旋转的过程中,有下列判断:①存在点,使得;②存在点,使得;③四面体的体积既有最大值又有最小值:④若二面角为直二面角,则直线与平面所成角的最大值为45°.其中正确的是______(请填上所有你认为正确的结果的序号).15.过抛物线:的焦点的直线交于,两点,若,则线段中点的横坐标为______16.在1和9之间插入三个数,使这五个数成等比数列,则中间三个数的积等于________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面,是等边三角形.(1)证明:平面平面.(2)求点到平面的距离.18.(12分)已知椭圆:经过点,设右焦点F,椭圆上存在点Q,使QF垂直于x轴且.(1)求椭圆的方程;(2)过点的直线与椭圆交于D,G两点.是否存在直线使得以DG为直径的圆过点E(-1,0)?若存在,求出直线的方程,若不存在,说明理由.19.(12分)已知命题:方程表示焦点在轴上的双曲线,命题:关于的方程无实根(1)若命题为真命题,求实数的取值范围;(2)若“”为假命题,"”为真命题,求实数的取值范围20.(12分)在平面直角坐标系xOy中,已知椭圆的离心率为,且短轴长为2.(1)求椭圆C的方程;(2)设椭圆C的上顶点为B,右焦点为F,直线l与椭圆交于M,N两点,问是否存在直线l,使得F为的垂心,若存在,求出直线l的方程;若不存在,说明理由.21.(12分)已知数列中,,.(1)求证:数列是等差数列,并求数列的通项公式;(2)求数列的前项和.22.(10分)如图,已知圆锥SO底面圆的半径r=1,直径AB与直径CD垂直,母线SA与底面所成的角为.(1)求圆锥SO的侧面积;(2)若E为母线SA的中点,求二面角E-CD-B的大小.(结果用反三角函数值表示)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】按照空间中点到直线的距离公式直接求解.【详解】由题意,,,的方向向量,,则点到直线的距离为.故选:C.2、C【解析】根据的值与临界值的大小关系进行判断.【详解】∵,,∴在犯错误的概率不超过的前提下认为“这种疫苗能起到预防的作用”,C对,由已知数据不能确定若某人未使用该疫苗,则他在一年中有的可能性生病,A错,由已知数据不能判断这种疫苗预防的有效率为,B错,由已知数据没有的把握认为这种疫苗不能起到预防生病的作用,D错,故选:C.3、B【解析】根据双曲线定义结合,求得,在中,利用余弦定理求得之间的关系,即可得出答案.【详解】解:因为在双曲线中,因为,所以,所以,在中,,,由余弦定理可得,即,所以,所以,所以,所以双曲线的渐近线方程为.故选:B.4、A【解析】圆心为,半径为2,圆心到直线的距离为,解不等式得k的取值范围考点:直线与圆相交的弦长问题5、D【解析】根据前三个五边形数可推断出第四个五边形数.【详解】第一个五边形数为,第二个五边形数为,第三个五边形数为,故第四个五边形数为.故选:D.6、B【解析】结合已知条件,利用对称的概念即可求解.【详解】不妨设点关于轴对称的点的坐标为,则线段垂直于轴且的中点在轴,从而点关于轴对称的点的坐标为.故选:B.7、D【解析】设双曲线的方程为,利用焦点为求出的值即可.【详解】因为双曲线的一条渐近方程为,且焦点为,所以可设双曲线的方程为,则,,所以该双曲线方程为.故选:D.8、C【解析】先研究四个选项中图象的特征,再对照小明上学路上的运动特征,两者对应即可选出正确选项.【详解】考查四个选项,横坐标表示时间,纵坐标表示的是离开学校的距离,由此知,此函数图象一定是下降的,由此排除A;再由小明骑车上学,开始时匀速行驶可得出图象开始一段是直线下降型,又途中因交通堵塞停留了一段时间,故此时有一段函数图象与x轴平行,由此排除D,之后为了赶时间加快速度行驶,此一段时间段内函数图象下降的比较快,由此可确定C正确,B不正确故选C【点睛】本题考查函数的表示方法,关键是理解坐标系的度量与小明上学的运动特征,属于基础题.9、D【解析】利用几何概型的概率公式,转化为面积比直接求解.【详解】以AB为直径作圆,当点M在圆外时,.所以事件“”发生的概率为.故选:D10、A【解析】根据累加法得,,进而得.【详解】解:因为所以,当时,,,……,,所以,将以上式子相加得,所以,,.当时,,满足;所以,.所以.故选:A11、B【解析】建立空间直角坐标系,以向量法去求的大小即可解决.【详解】由题意可得平面,,则两两垂直以O为原点,分别以OB、OA、OC所在直线为x、y、z轴建立空间直角坐标系则,,,,又,则故选:B12、B【解析】先求出抛物线方程,焦点坐标,再用两点间距离公式进行求解.【详解】将代入抛物线中得:,解得:,所以抛物线方程为,焦点坐标为,所以点到抛物线焦点的距离为故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求解定义域,由导函数小于0得到递减区间,进而得到不等式组,求出实数的取值范围.【详解】显然,且,由,以及考虑定义域x>0,解得:.在区间,上单调递减,∴,解得:.故答案为:14、①②④【解析】①当D为中点,且A,B,C,D四点共面时,可证得四边形ABCD为正方形即可判断①;②当D在平面ABC内的射影E在线段BC上(不含端点)时,可知平面ABC,可证得平面CDB,即可判断②;③,研究临界值即可判断③;④二面角D-AC-B为直二面角,且D为中点时,直线DB与平面ABC所成角的最大,作图分析验证可判断④.【详解】①当D为中点,且A,B,C,D四点共面时,连结BD,交AC于,则为AC中点,此时,且,所以四边形ABCD为正方形,所以AB//CD,故①正确;②当D在平面ABC内的射影E在线段BC上(不含端点)时,此时有:平面ABC,,又因为,所以平面CDB,所以,故②正确;③,当平面平面ABC,且D为中点时,h有最大值;当A,B,C,D四点共面时h有最小值0,此时为平面图形,不是立体图形,故四面体D-ABC无最小值,故③错误.④二面角D-AC-B为直二面角,且D为中点时,直线DB与平面ABC所成角的最大,取AC中点O,连结DO,BO,则,AC=平面平面ACD,平面平面ACD,所以平面ABC,所以为直线DB与平面ABC所成角,设,则,,所以为等腰直角三角形,所以,直线与平面所成角的最大值为45°,故④正确.故答案为:①②④.15、【解析】根据题意,作出抛物线的简图,求出抛物线的焦点坐标以及准线方程,分析可得为直角梯形中位线,由抛物线的定义分析可得答案【详解】如图,抛物线的焦点为,准线为,分别过,作准线的垂线,垂足为,,则有过的中点作准线的垂线,垂足为,则为直角梯形中位线,则,即,解得.所以的横坐标为故答案为:16、27【解析】设公比为,利用已知条件求出,然后根据通项公式可求得答案【详解】设公比为,插入的三个数分别为,因为,所以,得,所以,故答案为:27三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)根据等边三角形的性质、线面垂直的性质,结合面面垂直的判定定理进行证明即可;(2)利用余弦定理,结合三棱锥的等积性进行求解即可.【小问1详解】证明:设,因为是等边三角形,且,所以是的中点,则.又,所以,所以,即.又平面平面,所以.又,所以平面.因为平面,所以平面平面.【小问2详解】解:因为,所以.在中,,所以,则又平面,所以.如图,连接,则,所以.设点到平面的距离为,因为,所以,解得,即点到平面的距离为.18、(1);(2)存在,或.【解析】(1)根据题意,列出的方程组,求得,则椭圆方程得解;(2)对直线的斜率进行讨论,当斜率存在时,设出直线方程,联立椭圆方程,利用韦达定理,转化题意为,求解即可.小问1详解】由题意,得,设,将代入椭圆方程,得,所以,解得,所以椭圆的方程为.【小问2详解】当斜率不存在时,即时,,为椭圆短轴两端点,则以为直径的圆为,恒过点,满足题意;当斜率存在时,设,,,由得:,,解得:,,若以为直径的圆过点,则,即,又,,,解得:,满足,即,此时直线的方程为综上,存在直线使得以为直径的圆过点,的方程为或19、(1);(2).【解析】(1)由双曲线标准方程的性质得,即可求m的范围;(2)当q命题为真时,方程无实根,判别式小于零,求得m的范围,再由复合命题的真假得和一真一假,列出不等式组运算可得解【小问1详解】∵方程表示焦点在轴上的双曲线,∴,解得【小问2详解】若为真命题,则,解得,∵“”为假命题,”为真命题,∴一真一假当真假时,“”且“或”,则;当假真时,,则综上所述,实数的取值范围是20、(1)(2)存在,【解析】(1)根据离心率及短轴长,利用椭圆中的关系可以求出椭圆方程;(2)设直线的方程,与椭圆方程联立,根据一元二次方程根与系数关系,结合已知和斜率公式,可以求出直线的方程.【小问1详解】,,,,椭圆的标准方程为.【小问2详解】由已知可得,,,∴,∵,设直线的方程为:,代入椭圆方程整理得,设,,则,,∵,∴.即,因为,,即..所以,或.又时,直线过点,不合要求,所以.故存在直线:满足题设条件.21、(1)证明见解析,(2)【解析】(1)由,取倒数得到,再利用等差数列的定义求解;(2)由(1)得到,利用错位相减法求解.【小问1详解】证明:由,以及,显然,所以,即,所以数列是首项为,公差为的等差数列,所以,所以;【小问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论