




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省深圳市耀华实验学校高二数学第一学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知正项等比数列的前项和为,且,则的最小值为()A. B.C. D.2.在中,,,,则此三角形()A.无解 B.一解C.两解 D.解的个数不确定3.已知两条不同直线和平面,下列判断正确的是()A.若则 B.若则C.若则 D.若则4.已知双曲线满足,且与椭圆有公共焦点,则双曲线的方程为()A. B.C. D.5.经过点的直线的倾斜角为,则A. B.C. D.6.已知两定点和,动点在直线上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的短轴的最小值为()A. B.C. D.7.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件8.已知点是椭圆上的任意一点,过点作圆:的切线,设其中一个切点为,则的取值范围为()A. B.C. D.9.已知函数有两个不同的零点,则实数的取值范围是()A B.C. D.10.在空间直角坐标系中,已知点M是点在坐标平面内的射影,则的坐标是()A. B.C. D.11.甲,乙、丙、丁、戊共5人随机地排成一行,则甲、乙相邻,丙、丁不相邻的概率为()A. B.C. D.12.已知向量,,则等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线,,为抛物线上一点,则到这两条直线距离之和的最小值为___________.14.总书记在“十九大”报告中指出:坚定文化自信,推动中华优秀传统文化创造性转化.“杨辉三角”揭示了二项式系数在三角形中的一种几何排列规律,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现,欧洲数学家帕斯卡在1654年才发现这一规律,比杨辉要晚近四百年.“杨辉三角”是中国数学史上的一个伟大成就,激发起一批又一批数学爱好者的探究欲望.如图所示,在由二项式系数所构成的“杨辉三角中,第10行第8个数是______15.历史上第一个研究圆锥曲线的是梅纳库莫斯(公元前375年—325年),大约100年后,阿波罗尼奥更详尽、系统地研究了圆锥曲线,并且他还进一步研究了这些圆锥曲线的光学性质,比如:从抛物线的焦点发出的光线或声波在经过抛物线反射后,反射光线平行于抛物线的对称轴:反之,平行于抛物线对称轴的光线,经抛物线反射后,反射光线经过抛物线的焦点.已知抛物线,经过点一束平行于C对称轴的光线,经C上点P反射后交C于点Q,则PQ的长度为______.16.设双曲线的焦点为,点为上一点,,则为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)自2021年秋季起,江西省普通高中起始年级全面实施新课程改革,为了迎接新高考,某校举行物理和化学等选科考试,其中600名学生化学成绩(满分100分)的频率分布直方图如图所示,其中成绩分组区间是:第一组,第二组,第三组,第四组,第五组.已知图中前三个组的频率依次构成等差数列,第一组和第五组的频率相同(1)求a,b的值;(2)估算高分(大于等于80分)人数;(3)估计这600名学生化学成绩的平均值(同一组中的数据用该组区间的中点值作代表)和中位数(中位数精确到0.1)18.(12分)如图,在三棱锥中,平面平面,,都是等腰直角三角形,,,,分别为,的中点.(1)求证:平面;(2)求证:平面.19.(12分)已知,:,:.(1)若,为真命题,为假命题,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围20.(12分)已知椭圆过点,且离心率为.(1)求椭圆的方程;(2)过作斜率分别为的两条直线,分别交椭圆于点,且,证明:直线过定点.21.(12分)如图,中,且,将沿中位线EF折起,使得,连结AB,AC,M为AC的中点.(1)证明:平面ABC;(2)求二面角的余弦值.22.(10分)在中,角A,B,C所对的边分别为a,b,c,且,,.(1)求角B;(2)求a,c的值及的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设等比数列的公比为,则,由可得,可得出,利用基本不等式可求得结果.【详解】设等比数列的公比为,则,因为,则,所以,,则,当且仅当时,等号成立.故选:B.2、C【解析】利用正弦定理求出的值,再根据所求值及a与b的大小关系即可判断作答.【详解】在中,,,,由正弦定理得,而为锐角,且,则或,所以有两解故选:C3、D【解析】根据线线、线面、面面的平行与垂直的位置关系即可判断.【详解】解:对于选项A:若,则与可能平行,可能相交,可能异面,故选项A错误;对于选项B:若,则,故选项B错误;对于选项C:当时不满足,故选项C错误;综上,可知选项D正确.故选:D.4、A【解析】根据椭圆的标准方程求出,利用双曲线,结合建立方程求出,,即可求出双曲线的渐近线方程【详解】椭圆的标准方程为,椭圆中的,双曲线的焦点与椭圆的焦点相同,双曲线中,双曲线满足,即又在双曲线中,即,解得:,所以双曲线的方程为,故选:A【点睛】关键点点睛:本题主要考查双曲线方程的求解,根据椭圆和双曲线的关系建立方程求出,,是解决本题的关键,考查学生的计算能力,属于基础题5、A【解析】由题意,得,解得;故选A考点:直线的倾斜角与斜率6、B【解析】根据题意,点关于直线对称点的性质,以及椭圆的定义,即可求解.【详解】根据题意,设点关于直线的对称点,则,解得,即.根据椭圆的定义可知,,当、、三点共线时,长轴长取最小值,即,由且,得,因此椭圆C的短轴的最小值为.故选:B.7、A【解析】由三角函数的单调性直接判断是否能推出,反过来判断时,是否能推出.【详解】当时,利用正弦函数的单调性知;当时,或.综上可知“”是“”的充分不必要条件.故选:A【点睛】本题考查判断充分必要条件,三角函数性质,意在考查基本判断方法,属于基础题型.8、B【解析】设,得到,利用椭圆的范围求解.【详解】解:设,则,,,因为,所以,即,故选:B9、A【解析】分离参数,求函数的导数,根据函数有两个零点可知函数的单调性,即可求解.【详解】由题意得有两个零点令,则且所以,在上为增函数,可得,当,在上单调递减,可得,即要有两个零点有两个零点,实数的取值范围是.故选:A【点睛】方法点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解10、C【解析】点在平面内的射影是坐标不变,坐标为0的点.【详解】点在坐标平面内的射影为,故点M的坐标是故选:C11、A【解析】先求出所有的基本事件,再求出甲、乙相邻,丙、丁不相邻的基本事件,根据古典概型的概率公式求解即可【详解】甲,乙、丙、丁、戊共5人随机地排成一行有种方法,甲、乙相邻,丙、丁不相邻的排法为先将甲、乙捆绑在一起,再与戊进行排列,然后丙、丁从3个空中选2个空插入,则共有种方法,所以甲、乙相邻,丙、丁不相邻的概率为,故选:A12、C【解析】根据题意,结合空间向量的坐标运算,即可求解.【详解】由,,得,因此.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】过作,垂足分别为,由直线为抛物线的准线,转化,当三点共线时,取得最小值【详解】过作,垂足分别为抛物线的焦点为直线为抛物线的准线由抛物线的定义,故,当三点共线时,取得最小值故最小值为点到直线的距离:故答案为:14、120【解析】根据二项式的展开式系数的相关知识即可求解.【详解】因为,二项式展开式第项的系数为,所以,第10行第8个数是.故答案为:12015、####【解析】根据题意,求得点以及抛物线焦点的坐标,即可求得所在直线方程,联立其与抛物线方程,求得点的坐标,即可求得.【详解】因为经过点一束平行于C对称轴的光线交抛物线于点,故对,令,则可得,也即的坐标为,又抛物线的焦点的坐标为,故可得直线方程为,联立抛物线方程可得:,,解得或,将代入,可得,即的坐标为,则.故答案为:.16、【解析】将方程化为双曲线的标准方程,再利用双曲线的定义进行求解.【详解】将化为,所以,,由双曲线的定义,得:,即,所以或(舍)故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)90(3)平均值69.5;中位数69.4【解析】(1)由各矩形面积和为1列式即可;(2)由高分频率乘以600即可;(3)由平均数与中位数的估算方法列式即可.【小问1详解】由题意可知:解得小问2详解】高分的频率约为:故高分人数为:【小问3详解】平均值为,设中位数为x,则故中位数为69.418、(1)证明见解析(2)证明见解析【解析】(1)由三角形的中位线定理可证得MN∥AB,再由线面垂直的判定定理可证得结论,(2)由已知可得AB⊥BC,VC⊥AC,再由已知结合面面垂直的性质定理可得VC⊥平面ABC,从而有AB⊥VC,然后由线面垂直的判定定理可证得结论【小问1详解】证明:∵M,N分别为VA,VB的中点,∴MN∥AB,∵AB⊄平面CMN,MN⊂平面CMN,∴AB∥平面CMN【小问2详解】证明:∵△ABC和△VAC均是等腰直角三角形,AB=BC,AC=CV,∴AB⊥BC,VC⊥AC,∵平面VAC⊥平面ABC,平面VAC∩平面ABC=AC,∴VC⊥平面ABC,∵AB⊂平面ABC,∴AB⊥VC,又VC∩BC=C,∴AB⊥平面VBC19、(1)(2)【解析】(1)化简命题p,将m=3代入求出命题q,再根据或、且连接的命题真假确定p,q真假即可得解;(2)由给定条件可得p是q的必要不充分条件,再列式计算作答.【小问1详解】依题意,:,:,得:.当时,:,因为真命题,为假命题,则与一真一假,当真假时,即或,无解,当假真时,即或,解得或,综上得:或,所以实数x的取值范围是;【小问2详解】因是的充分不必要条件,则p是q的必要不充分条件,于是得,解得,所以实数m的取值范围是20、(1);(2)证明见解析.【解析】(1)由离心率、过点和椭圆关系可构造方程求得,由此可得椭圆方程;(2)当直线斜率不存在时,表示出两点坐标,由两点连线斜率公式表示出,整理可得直线为;当直线斜率存在时,设,与椭圆方程联立可得韦达定理的形式,代入中整理可得,由此可得直线所过定点;综合两种情况可得直线过定点.【详解】(1)椭圆过点,即,;,又,,椭圆的方程为:.(2)当直线斜率不存在时,设直线方程为,则,则,,解得:,直线方程为;当直线斜率存在时,设直线方程为,联立方程组得:,设,则,(*),则,将*式代入化简可得:,即,整理得:,代入直线方程得:,即,联立方程组,解得:,,直线恒过定点;综上所述:直线恒过定点.【点睛】思路点睛:本题考查直线与椭圆综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于或的一元二次方程的形式;②利用求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.21、(1)证明见解析(2)【解析】(1)由勾股定理以及等腰三角形的性质得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省内江市东兴区2025届初三培优班考前测验(生物试题)试题(1)含解析
- 信阳学院《特效短片创作》2023-2024学年第二学期期末试卷
- 南昌影视传播职业学院《工程设计与分析》2023-2024学年第一学期期末试卷
- 吉林电子信息职业技术学院《传感器原理与应用》2023-2024学年第二学期期末试卷
- 南京审计大学金审学院《绿色建筑与节能技术》2023-2024学年第二学期期末试卷
- 浙江水利水电学院《啤酒工艺学》2023-2024学年第二学期期末试卷
- 内江卫生与健康职业学院《电子技术课程设计》2023-2024学年第二学期期末试卷
- 云南省曲靖市沾益县重点名校2024-2025学年初三综合测试(二)英语试题含答案
- 市场营销学前言
- 机器人焊装基础
- 公司企业工匠申报表
- 三字经全文(带拼音及诵读指导)精编版课件
- 井控培训知识课件
- 企业年金培训版教学课件
- 双减背景下小学语文作业的有效设计课件
- 十二讲船舶制冷装置课件
- 健康信息学中医药学语言系统语义网络框架
- 2023年中考语文一轮复习考点梳理+对点训练(原卷版+解析版)(打包7套)
- 普通高中学生综合素质档案填写样表
- 大连理工大学机械制图习题集答案.
- 小学生数学习惯养成总结-ppt课件
评论
0/150
提交评论