版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省泰兴市西城中学数学高二上期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数学家歌拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知的三个顶点分别为,,,则的欧拉线方程是()A. B.C. D.2.下列四个命题中,为真命题的是()A.若a>b,则ac2>bc2B.若a>b,c>d,则a﹣c>b﹣dC.若a>|b|,则a2>b2D.若a>b,则3.执行如图所示的程序框图,若输入,则输出的m的值是()A.-1 B.0C.0.1 D.14.过抛物线的焦点的直线交抛物线于不同的两点,则的值为A.2 B.1C. D.45.若曲线表示圆,则m的取值范围是()A. B.C. D.6.命题p:存在一个实数﹐它的绝对值不是正数.则下列结论正确的是()A.:任意实数,它的绝对值是正数,为假命题B.:任意实数,它的绝对值不是正数,为假命题C.:存在一个实数,它的绝对值是正数,为真命题D.:存在一个实数,它的绝对值是负数,为真命题7.双曲线的焦点到渐近线的距离为()A. B.2C. D.8.设双曲线:(,)的右顶点为,右焦点为,为双曲线在第二象限上的点,直线交双曲线于另一个点(为坐标原点),若直线平分线段,则双曲线的离心率为()A. B.C. D.9.已知数列满足,若.则的值是()A. B.C. D.10.已知是椭圆两个焦点,P在椭圆上,,且当时,的面积最大,则椭圆的标准方程为()A. B.C. D.11.已知为两条不同的直线,为两个不同的平面,则下列结论正确的是()A.若,则B.若,则C.若,则D.若,则12.已知等差数列满足,则其前10项之和为()A.140 B.280C.68 D.56二、填空题:本题共4小题,每小题5分,共20分。13.若两定点A,B的距离为3,动点M满足,则M点的轨迹围成区域的面积为_________14.设,向量,,,且,,则___________.15.已知斜率为1的直线经过椭圆的左焦点,且与椭圆交于,两点,若椭圆上存在点,使得的重心恰好是坐标原点,则椭圆的离心率______.16.已知椭圆的左、右顶点分别为A,B,椭圆C的左、右焦点分别为F1,F2,点为椭圆C的下顶点,直线MA与MB的斜率之积为.(1)求椭圆C的方程;(2)设点P,Q为椭圆C上位于x轴下方的两点,且,求四边形面积的最大值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图甲,平面图形中,,沿将折起,使点到点的位置,如图乙,使.(1)求证:平面平面;(2)若点满足,求点到直线的距离.18.(12分)已知函数,(1)求曲线在点处的切线方程;(2)若对任意的,恒成立,求实数的取值范围19.(12分)年月日,中国选手杨倩在东京奥运会女子米气步枪决赛由本得冠军,为中国代表团揽入本届奥运会第一枚金牌.受奥运精神的鼓舞,某射击俱乐部组织名射击爱好者进行一系列的测试,并记录他们的射击得分(单位:分),将所得数据整理得到如图所示的频率分布直方图.(1)求频率分布直方图中的值,并估计该名射击爱好者的射击平均得分(求平均值时同一组数据用该组区间的中点值作代表);(2)若采用分层抽样的方法,从得分高于分的射击爱好者中随机抽取人调查射击技能情况,再从这人中随机选取人进行射击训练,求这人中至少有人的分数高于分的概率.20.(12分)设:函数的定义域为;:不等式对任意的恒成立(1)如果是真命题,求实数的取值范围;(2)如果“”为真命题,“”为假命题,求实数的取值范围21.(12分)已知数列的前n项和为,且(1)求证:数列为等比数列;(2)记,求数列的前n项和为22.(10分)已知数列是等差数列,其前项和为,且,.(1)求;(2)记数列的前项和为,求当取得最小值时的的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据的三个顶点坐标,先求解出重心的坐标,然后再根据三个点坐标求解任意两条垂直平分线的方程,联立方程,即可算出外心的坐标,最后根据重心和外心的坐标使用点斜式写出直线方程.【详解】由题意可得的重心为.因为,,所以线段的垂直平分线的方程为.因为,,所以直线的斜率,线段的中点坐标为,则线段的垂直平分线的方程为.联立,解得,则的外心坐标为,故的欧拉线方程是,即故选:B.2、C【解析】利用不等式的性质结合特殊值法依次判断即可【详解】当c=0时,A不成立;2>1,3>-1,而2-3<1-(-1),故B不成立;a=2,b=1时,,D不成立;由a>|b|知a>0,所以a2>b2,C正确故选:C3、B【解析】计算后,根据判断框直接判断即可得解.【详解】输入,计算,判断为否,计算,输出.故选:B.4、D【解析】本题首先可以通过直线交抛物线于不同的两点确定直线的斜率存在,然后设出直线方程并与抛物线方程联立,求出以及的值,然后通过抛物线的定义将化简,最后得出结果【详解】因为直线交抛物线于不同的两点,所以直线的斜率存在,设过抛物线的焦点的直线方程为,由可得,,因为抛物线的准线方程为,所以根据抛物线的定义可知,,所以,综上所述,故选D【点睛】本题考查了抛物线的相关性质,主要考查了抛物线的定义、过抛物线焦点的直线与抛物线相交的相关性质,考查了计算能力,是中档题5、C【解析】按照圆的一般方程满足的条件求解即可.【详解】或.故选:C.6、A【解析】根据存在量词命题的否定为全称量词命题判断,再利用特殊值判断命题的真假;【详解】解:因为命题p“存在一个实数﹐它的绝对值不是正数”为存在量词命题,其否定为“任意实数,它的绝对值是正数”,因为,所以为假命题;故选:A7、A【解析】根据点到直线距离公式进行求解即可.【详解】由双曲线的标准方程可知:,该双曲线的焦点坐标为:,双曲线的渐近线方程为:,所以焦点到渐近线的距离为:,故选:A8、A【解析】由给定条件写出点A,F坐标,设出点B的坐标,求出线段FC的中点坐标,由三点共线列式计算即得.【详解】令双曲线的半焦距为c,点,设,由双曲线对称性得,线段FC的中点,因直线平分线段,即点D,A,B共线,于是有,即,即,离心率.故选:A9、D【解析】由,转化为,再由求解.【详解】因为数列满足,所以,即,因为,所以,所以,故选:D10、A【解析】由题意知c=3,当△F1PF2的面积最大时,点P与椭圆在y轴上的顶点重合,即可解出【详解】由题意知c=3,当△F1PF2的面积最大时,点P与椭圆在y轴上的顶点重合,∵时,△F1PF2的面积最大,∴a==,b=∴椭圆的标准方程为故选:A11、D【解析】根据空间里面直线与平面、平面与平面位置关系的相关定理逐项判断即可.【详解】A,若,则或异面,故该选项错误;B,若,则或相交,故该选项错误;C,若,则α,β不一定垂直,故该选项错误;D,若,则利用面面垂直的性质可得,故该选项正确.故选:D.12、A【解析】根据等差数列的性质,可得,结合等差数列的求和公式,即可求解.【详解】由题意,等差数列满足,根据等差数列的性质,可得,所以数列的前10项和为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立如图直角坐标系,设点,根据题意和两点坐标求距离公式可得,结合圆的面积公式计算即可.【详解】以点A为坐标原点,射线AB为x轴的非负半轴建立直角坐标系,如图,设点,则,由,化简并整理得:,于是得点M轨迹是以点为圆心,2为半径的圆,其面积为,所以M点的轨迹围成区域的面积为.故答案为:14、3【解析】利用向量平行和向量垂直的性质列出方程组,求出,,再由空间向量坐标运算法则求出,由此能求出【详解】解:设,,向量,,,且,,,解得,,所以,,,故答案为:15、【解析】设点,,坐标分别为,则根据题意有,分别将点,,的坐标代入椭圆方程得,然后联立直线与椭圆方程,利用韦达定理得到和的值,代入得到关于的齐次式,然后解出离心率.【详解】设,,坐标分别为,因为的重心恰好是坐标原点,则,则,代入椭圆方程可得,其中,所以……①因为直线的斜率为,且过左焦点,则的方程为:,联立方程消去可得:,所以,……②所以……③,将②③代入①得,从而.故答案为:【点睛】本题考查椭圆的离心率求解问题,难度较大.解答时,注意,,三点坐标之间的关系,注意韦达定理在解题中的运用.16、(1)(2)【解析】(1)由斜率之积求得,再由已知条件得,从而得椭圆方程;(2)延长QF2交椭圆于N点,连接,,设直线,,.直线方程代入椭圆方程,应用韦达定理得,结合不等式的性质、函数的单调性可得的范围,再计算出四边形面积得结论【小问1详解】由题知:,,,又,∴椭圆.【小问2详解】延长QF2交椭圆于N点,连接,,如下图所示:,∴设直线,,.由,得,,,.,由勾形函数的单调性得,根据对称性得:,且,,∴四边形面积的最大值为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)利用给定条件可得平面,再证即可证得平面推理作答.(2)由(1)得EA,EB,EG两两垂直,建立空间直角坐标系,先求出向量在向量上的投影的长,然后由勾股定理可得答案.【小问1详解】因为,则,且,又,平面,因此,平面,即有平面,平面,则,而,则四边形为等腰梯形,又,则有,于是有,则,即,,平面,因此,平面,而平面,所以平面平面.【小问2详解】由(1)知,EA,EB,EG两两垂直,以点E为原点,射线EA,EB,EG分别为x,y,z轴非负半轴建立空间直角坐标系,如图,因,四边形是矩形,则,即,,,由,则则则向量在向量上的投影的长为又,所以点到直线的距离18、(1);(2).【解析】(1)求出函数的导数,计算,,求出切线方程即可;(2)问题转化为,利用导函数求出的最大值,求出的范围即可.【小问1详解】因为,所以,则切线的斜率为,又因为,则切点为,所以曲线在点处的切线方程为,即【小问2详解】当时,令得,列表得x001↘极小值↗所以当时,的最大值为由题意知,故,解之得,所以实数的取值范围为.19、(1),平均分为;(2).【解析】(1)利用频率直方图中所有矩形面积之和为可求得的值,将每个矩形底边的中点值乘以对应矩形的面积,将所得结果全部相加可得平均成绩;(2)分析可知所抽取的人中,成绩在内的有人,分别记为、、、,成绩在内的有人,分别记为、,列举出所有的基本事件,并确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:根据频率分布直方图得到,解得.这组样本数据平均数为.【小问2详解】解:根据频率分布直方图得到,分数在、内的频率分别为、,所以采用分层抽样的方法从样本中抽取的人,成绩在内的有人,分别记为、、、,成绩在内的有人,分别记为、,记“人中至少有人的分数高于分”为事件.则所有的基本事件有、、、、、、、、、、、、、、,共种.事件包含的基本事件有、、、、、、、、,共种,所以.20、(1)(2)【解析】(1)由对数函数性质,转化为对任意的恒成立,结合二次函数的性质,即可求解;(2)利用基本不等式,求得当命题是真命题,得到,结合“”为真命题,“”为假命题,分类讨论,即可求解.【小问1详解】解:因为是真命题,所以对任意的恒成立,当时,不等式,显然在不能恒成立;当时,则满足解得,故实数的取值范围为【小问2详解】解:因为,所以,当且仅当时,等号成立若是真命题,则;因为“”为真命题,“”为假命题,所以与一真一假当真假时,所以;当假真时,所以,综上,实数的取值范围为21、(1)证明见解析;(2).【解析】(1)由已知得,当时,两式作差整理得,根据等比数列的定义可得证;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- H物流公司运输问题分析及解决方案研究9500字【论文】
- 二零二四年度房地产交易平台服务合同
- 二零二四年电子产品生产销售合作协议
- 二零二四年度版权转让与许可使用协议
- 2024年度企业信息化改造合同3篇
- 抵押汽车还款计划调整2024年度合同2篇
- 二零二四年度租赁物购买合同购买价格及支付方式
- 二零二四年度原材料供应商独家合作协议
- 2024年度存量房买卖及居间服务合同
- 场地租赁与装修合同(04版)
- 中华人民共和国保守国家秘密法实施条例培训课件
- 小学英语“教学评一体化”实施
- 电影音乐欣赏智慧树知到期末考试答案章节答案2024年华南农业大学
- 生物信息学概论智慧树知到期末考试答案章节答案2024年中南大学
- 跨国公司的外汇风险管理分析-以TCL科技为例
- 电大中级财务会计二形考任务1-4答案
- T∕ACSC 01-2022 辅助生殖医学中心建设标准(高清最新版)
- 恙虫病-PPT课件
- 电视剧固定投资回报合同协议书范本
- 飞太岁、暗箭煞的推算方法
- 工会选举选票及汇总表.doc
评论
0/150
提交评论