版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省广元天立学校2025届高一上数学期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的图象是一条连续不断的曲线,且有如下对应函数值表:12456123.13615.55210.88-52.488-232.064在以下区间中,一定有零点的是()A.(1,2) B.(2,4)C.(4,5) D.(5,6)2.已知函数则的值为()A. B.C.0 D.13.的分数指数幂表示为()A. B.C. D.都不对4.在半径为2的圆上,一扇形的弧所对的圆心角为,则该扇形的面积为()A. B.C. D.5.定义在上的函数满足,且,,则不等式的解集为()A. B.C. D.6.角的终边落在()A.第一象限 B.第二象限C.第三象限 D.第四象限7.已知点在圆外,则直线与圆的位置关系是()A.相切 B.相交C.相离 D.不确定8.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为A. B.C. D.9.已知函数是定义在R上的偶函数,若对于任意不等实数,,,不等式恒成立,则不等式的解集为()A. B.C. D.10.已知,则=A.2 B.C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.过点且与直线垂直的直线方程为___________.12.若“”是“”的必要条件,则的取值范围是________13.函数,则__________.14.已知一个扇形的面积为,半径为,则它的圆心角为______弧度15.函数是幂函数,且当时,是减函数,则实数=_______16.已知函数,若,则_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱锥P﹣ABC中,PA⊥平面ABC,CA=CB,点D,E分别为AB,AC的中点.求证:(1)DE∥平面PBC;(2)CD⊥平面PAB18.已知函数.(1)求函数的最小正周期及函数的对称轴方程;(2)若,求函数的单调区间和值域.19.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称函数的一个上界.已知函数,.(1)若函数为奇函数,求实数的值;(2)在第(1)的条件下,求函数在区间上的所有上界构成的集合;(3)若函数在上是以3为上界的有界函数,求实数的取值范围.20.已知,(1)当且x是第四象限角时,求的值;(2)若关于x的方程有实数根,求a的最小值21.如图,角的终边与单位圆交于点,且.(1)求;(2)求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由表格数据,结合零点存在定理判断零点所在区间.【详解】∵∴,,,,又函数的图象是一条连续不断的曲线,由函数零点存在定理可得在区间上一定有零点故选:C.2、D【解析】根据分段函数解析式及指数对数的运算法则计算可得;【详解】解:因为,所以,所以,故选:D3、B【解析】直接由根式化为分数指数幂即可【详解】解:故选:B【点睛】本题考查了根式与分数指数幂的互化,属基础题.4、D【解析】利用扇形的面积公式即可求面积.【详解】由题设,,则扇形的面积为.故选:D5、B【解析】对变形得到,构造新函数,得到在上单调递减,再对变形为,结合,得到,根据的单调性,得到解集.【详解】,不妨设,故,即,令,则,故在上单调递减,,不等式两边同除以得:,因为,所以,即,根据在上单调递减,故,综上:故选:B6、A【解析】由于,所以由终边相同的定义可得结论【详解】因为,所以角的终边与角的终边相同,所以角的终边落在第一象限角故选:A7、B【解析】由题意结合点与圆的位置关系考查圆心到直线的距离与圆的半径的大小关系即可确定直线与圆的位置关系.【详解】点在圆外,,圆心到直线距离,直线与圆相交.故选B.【点睛】本题主要考查点与圆的位置关系,直线与圆的位置关系等知识,意在考查学生的转化能力和计算求解能力.8、B【解析】得到的偶函数解析式为,显然【考点定位】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,选择合适的值通过诱导公式把转化为余弦函数是考查的最终目的.9、C【解析】由条件对于任意不等实数,,不等式恒成立可得函数在上为减函数,利用函数性质化简不等式求其解.【详解】∵函数是定义在R上的偶函数,∴,∴不等式可化为∵对于任意不等实数,,不等式恒成立,∴函数在上为减函数,又,∴,∴,∴不等式的解集为故选:C.10、D【解析】.故选.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用垂直关系设出直线方程,待定系数法求出,从而求出答案.【详解】设与直线垂直的直线为,将代入方程,,解得:,则与直线垂直的直线为.故答案为:12、【解析】根据题意解得:,得出,由此可得出实数的取值范围.【详解】根据题意解得:,由于“”是“”必要条件,则,.因此,实数的取值范围是:.故答案为:.13、【解析】先求的值,再求的值.【详解】由题得,所以.故答案为【点睛】本题主要考查指数对数运算和分段函数求值,意在考查学生对这些知识的理解掌握水平,属于基础题.14、##【解析】利用扇形的面积公式列方程即可求解.【详解】设扇形的圆心角为,扇形的面积即,解得,所以扇形的圆心角为弧度,故答案为:.15、-1【解析】根据幂函数的定义,令m2﹣m﹣1=1,求出m的值,再判断m是否满足幂函数当x∈(0,+∞)时为减函数即可【详解】解:∵幂函数,∴m2﹣m﹣1=1,解得m=2,或m=﹣1;又x∈(0,+∞)时,f(x)为减函数,∴当m=2时,m2+m﹣3=3,幂函数为y=x3,不满足题意;当m=﹣1时,m2+m﹣3=0,幂函数为y=x﹣3,满足题意;综上,m=﹣1,故答案为﹣1【点睛】本题考查了幂函数的定义与图像性质的应用问题,解题的关键是求出符合题意的m值16、-2020【解析】根据题意,设g(x)=f(x)+1=asinx+btanx,分析g(x)为奇函数,结合函数的奇偶性可得g(2)+g(﹣2)=f(2)+1+f(﹣2)+1=0,计算可得答案【详解】根据题意,函数f(x)=asinx+btanx﹣1,设g(x)=f(x)+1=asinx+btanx,有g(﹣x)=asin(﹣x)+btan(﹣x)=﹣(asinx+btanx)=﹣g(x),则函数g(x)为奇函数,则g(2)+g(﹣2)=f(2)+1+f(﹣2)+1=0,又由f(﹣2)=2018,则f(2)=﹣2020;故答案为-2020【点睛】本题考查函数奇偶性的性质以及应用,构造函数g(x)=f(x)+1是解题的关键,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】(1)由点D、E分别为AB、AC中点得知DE∥BC,由此证得DE∥平面PBC;(2)要证CD⊥平面PAB,只需证明垂直平面内的两条相交直线与即可.【详解】(1)因为点D、E分别为AB、AC中点,所以DE∥BC又因为DE⊄平面PBC,BC⊂平面PBC,所以DE∥平面PBC(2)因为CA=CB,点D为AB中点,所以CD⊥AB因为PA⊥平面ABC,CD⊂平面ABC,所以PA⊥CD又因为PA∩AB=A,所以CD⊥平面PAB【点睛】本题考查线面平行的证明,线面垂直的证明,属于基础题.垂直、平行关系证明中应用转化与化归思想的常见类型(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.18、(1)最小正周期为,对称轴方程为(2)函数在上单调递减,在上单调递增;值域为【解析】(1)先通过降幂公式化简成,再按照周期和对称轴方程进行求解;(2)求出整体的范围,再结合正弦函数的单调性求解单调区间和值域.【小问1详解】;函数的最小正周期为,函数的对称轴方程为;【小问2详解】,,时,函数单调递减,即时,函数在上单调递减;时,函数在单调递增,即时,函数在上单调递增.,函数的值域为.19、(1);(2);(3).【解析】(1)由函数为奇函数可得,即,整理得,可得,解得,经验证不合题意.(2)根据单调性的定义可证明函数在区间上为增函数,从而可得在区间上的值域为,故,从而可得所有上界构成的集合为.(3)将问题转化为在上恒成立,整理得在上恒成立,通过判断函数的单调性求得即可得到结果试题解析:(1)∵函数是奇函数,∴,即,∴,∴,解得,当时,,不合题意,舍去∴.(2)由(1)得,设,令,且,∵;∴在上是减函数,∴在上是单调递增函数,∴在区间上是单调递增,∴,即,∴在区间上的值域为,∴,故函数在区间上的所有上界构成的集合为.(3)由题意知,上恒成立,∴,∴,因此在上恒成立,∴设,,,由知,设,则,,∴在上单调递减,在上单调递增,∴在上的最大值为,在上的最小值为,∴∴的取值范围.点睛:(1)本题属于新概念问题,解题的关键是要紧紧围绕所给出的新定义,然后将所给问题转化为函数的最值(或值域)问题处理(2)求函数的最值(或值域)时,利用单调性是常用的方法之一,为此需要先根据定义判断出函数的单调性,再结合所给的定义域求出最值(或值域)20、(1)(2)1【解析】(1)根据立方差公式可知,要计算及的值就可以求解问题;(2)将方程转化为,再分类讨论即可求解.【小问1详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论