版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛市黄岛区2025届高一数学第一学期期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}2.下列函数在定义域内为奇函数,且有最小值的是A. B.C. D.3.已知唯一的零点在区间、、内,那么下面命题错误的A.函数在或,内有零点B.函数在内无零点C.函数在内有零点D.函数在内不一定有零点4.已知函数的部分图象如图所示,则函数图象的一个对称中心可能为()A. B.C. D.5.下列各组函数是同一函数的是()①与②与③与④与A.②④ B.③④C.②③ D.①④6.已知集合,则()A. B.C. D.7.设集合,,则A. B.C. D.8.函数y=sin2x,xR的最小正周期是()A.3π B.πC.2 D.19.函数fxA.0 B.1C.2 D.310.如图,在三棱锥S-ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是()A.相交 B.平行C.异面 D.以上都有可能二、填空题:本大题共6小题,每小题5分,共30分。11.,,则的值为__________.12.若,则___________.13.已知函数,R的图象与轴无公共点,求实数的取值范围是_________.14.已知直线,直线若,则______________15.已知集合,,则集合________.16.已知函数则的值为_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,点,,在函数的图象上(1)求函数的解析式;(2)若函数图象上的两点,满足,,求四边形OMQN面积的最大值18.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)解不等式f(x)>2x+5.19.已知,(1)若,求(2)若,求实数的取值范围.20.已知函数(1)求函数的定义域及的值;(2)判断函数的奇偶性;(3)判断在上的单调性,并给予证明21.已知二次函数满足对任意,都有;;的图象与轴的两个交点之间的距离为.(1)求的解析式;(2)记,(i)若为单调函数,求的取值范围;(ii)记的最小值为,若方程有两个不等的根,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】直接根据交集的定义即可得解.【详解】解:因为A={x|-2<x<1},B={x|x<-1或x>3},所以.故选:A.2、D【解析】选项A中,函数为奇函数,但无最小值,故满足题意选项B中,函数为偶函数,不合题意选项C中,函数为奇函数,但无最小值,故不合题意选项D中,函数,为奇函数,且有最小值,符合题意选D3、C【解析】利用零点所在的区间之间的关系,将唯一的零点所在的区间确定出,则其他区间就不会存在零点,进行选项的正误筛选【详解】解:由题意,唯一的零点在区间、、内,可知该函数的唯一零点在区间内,在其他区间不会存在零点.故、选项正确,函数的零点可能在区间内,也可能在内,故项不一定正确,函数的零点可能在区间内,也可能在内,故函数在内不一定有零点,项正确故选:【点睛】本题考查函数零点的概念,考查函数零点的确定区间,考查命题正误的判定.注意到命题说法的等价说法在判断中的作用4、C【解析】先根据图象求出,得到的解析式,再根据整体代换法求出其对称中心,赋值即可得出答案【详解】由图可知,,,∴,∴当时,,即令,解得当时,可得函数图象的一个对称中心为故选:C.【点睛】本题主要通过已知三角函数的图像求解析式考查三角函数的性质,属于中档题.利用利用图象先求出周期,用周期公式求出,利用特殊点求出,正确求是解题的关键.求解析式时,求参数是确定函数解析式的关键,由特殊点求时,一定要分清特殊点是“五点法”的第几个点,用五点法求值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与轴的交点)时;“第二点”(即图象的“峰点”)时;“第三点”(即图象下降时与轴的交点)时;“第四点”(即图象的“谷点”)时;“第五点”时.5、B【解析】利用函数的三要素:定义域、值域、对应关系相同即可求解.【详解】对于①,与,定义域均为,但对应,两函数的对应关系不同,故①不是同一函数;对于②,的定义域为,的定义域为,故②不是同一函数;对于③,与定义域均为,函数表达式可化简为,故③两函数为同一函数;对于④,根据函数的概念,与,定义域、对应关系、值域均相同,故④为同一函数,故选:B【点睛】本题考查了函数的三要素,函数相同只需函数的三要素:定义域、值域、对应关系相同,属于基础题.6、A【解析】对集合B中的分类讨论分析,再根据集合间的关系判断即可【详解】当时,,当时,,当时,,所以,或,或因为,所以.故选:A7、D【解析】详解】试题分析:集合,集合,所以,故选D.考点:1、一元二次不等式;2、集合的运算.8、B【解析】根据解析式可直接求出最小正周期.【详解】函数的最小正周期为.故选:B.9、B【解析】作出函数图像,数形结合求解即可.【详解】解:根据题意,x3-1故函数y=x3与由于函数y=x3与所以方程x3所以函数fx故选:B10、B【解析】因为G1,G2分别是△SAB和△SAC的重心,所以,所以.又因为M、N分别为AB、AC的中点,所以MN//BC,所以考点:线面平行的判定定理;线面平行的性质定理;公理4;重心的性质点评:我们要掌握重心性质:若G1为△SAB的重心,M为AB中点,则二、填空题:本大题共6小题,每小题5分,共30分。11、#0.3【解析】利用“1”的代换,构造齐次式方程,再代入求解.【详解】,故答案为:12、1【解析】由已知结合两角和的正切求解【详解】由,可知tan(α+β)=1,得,即tanα+tanβ=,∴故答案为1【点睛】本题考查两角和的正切公式的应用,是基础的计算题13、【解析】令=t>0,则g(t)=>0对t>0恒成立,即对t>0恒成立,再由基本不等式求出的最大值即可.【详解】,R,令=t>0,则f(x)=g(t)=,由题可知g(t)在t>0时与横轴无公共点,则对t>0恒成立,即对t>0恒成立,∵,当且仅当,即时,等号成立,∴,∴.故答案为:.14、【解析】由两条直线垂直,可得,解方程即可求解.详解】若,则,解得,故答案为:【点睛】本题考查了由两条直线互相垂直,求参数的范围,熟练掌握直线垂直的充要条件是解题的关键,考查了运算能力,属于基础题.15、【解析】根据集合的交集运算,即可求出结果.【详解】因为集合,,所以.故答案为:.16、【解析】首先计算,再求的值.【详解】,所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由图可求出,从而求得,由图可知函数处取得最小值,从而可求出的值,再将点的坐标代入函数中可求出,进而可求出函数的解析式,(2)由题意求得所以,,而四边形OMQN的面积为S,则,代入化简利用三角函数的性质可求得结果【小问1详解】由图可知的周期T满足,得又因为,所以,解得又在处取得最小值,即,得,所以,,解得,因为,所以.由,得,所以综上,【小问2详解】当时,,所以.由知此时记四边形OMQN的面积为S,则又因为,所以,所以当,即时,取得最大值所以四边形OMQN面积的最大值是18、(1);(2)【解析】(1)设二次函数f(x)=ax2+bx+c,利用待定系数法即可求出f(x);(2)利用一元二次不等式的解法即可得出【详解】(1).设二次函数f(x)=ax2+bx+c,∵函数f(x)满足f(x+1)﹣f(x)=2x,f(x+1)-f(x)=-=2ax+a+b=2x,解得.且f(0)=1.c=1∴f(x)=x2﹣x+1(2)不等式f(x)>2x+5,即x2﹣x+1>2x+5,化为x2﹣3x﹣4>0化为(x﹣4)(x+1)>0,解得x>4或x<﹣1∴原不等式的解集为【点睛】本题考查了用待定系数法求二次函数的解析式和一元二次不等式的解法,熟练掌握其方法是解题的关键,属于中档题.19、(1);(2)【解析】(1)先化简集合A和集合B,再求.(2)由A得再因为得到,即得.【详解】(1)当时,有得,由知得或,故.(2)由知得,因为,所以,得.【点睛】本题主要考查集合的化简运算,考查集合中的参数问题,考查绝对值不等式和对数不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.20、(1)(2)偶函数(3)在上是减函数,证明见解析.【解析】(1)根据对数函数成立的条件即可求函数f(x)的定义域及的值;(2)根据函数奇偶性的定义即可判断函数的奇偶性;(3)利用函数单调性的定义进行判断和证明.【详解】(1)因为,所以,解得,所以函数的定义域为.(2)由(1)知函数的定义域关于原点对称,且,所以函数是偶函数.(3)在上是减函数.设,且,则,因为,所以,所以,即,所以在上是减函数.【点睛】方法点睛:利用定义法证明函数的单调性,第一步设且,第二步做差,变形,判断差的符号,第三步根据差的符号作出结论.21、(1);(2)(i);(ii)或.【解析】(1)根据二次函数的对称轴、求参数a、b、c,写出的解析式;(2)(i)利用二次函数的性质,结合的区间单调性求的取值范围;(ii)讨论、、,结合二次函数的性质求最小值的表达式,再令并应用数形结合的方法研究的零点情况求的取值范围.【详解】(1)设由题意知:对称轴,,又,则,,设的两根为,,则,,由已知:,解得.(2)(i),其对称轴为为单调函数,或,解得或.的取值范围是.(ii),,对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 瑜伽扭转力量课程设计
- 2024年03月重庆浦发银行重庆分行春季校园招考笔试历年参考题库附带答案详解
- 管网课程设计排水
- 电子琴教学课程设计
- 2025年度数据中心消防系统安装合同2篇
- 2025版西瓜采摘体验园投资建设合同3篇
- 2025版许可使用合同(商业秘密)3篇
- 2024年安岳县中医医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年03月西藏中国人民银行西藏辖区聘用制员工招考笔试历年参考题库附带答案详解
- 2024年盆栽买卖合同模板:观花盆栽交易准则
- 检验科15项质量控制指标(检验科质控小组活动记录)
- 外研社小学英语三起点五年级上册(中英文对照)
- 重大行政执法法制审核流程图
- 施工现场重大危险源公示牌
- GB∕T 2518-2019 连续热镀锌和锌合金镀层钢板及钢带
- 海南省商品住宅专项维修资金管理办法
- 美国文学各个时期作家作品集合
- 空运委托书范本
- 工业氯化苄企业标准连云港泰乐
- 机翼翼肋实例零件库设计
- GB∕T 10596-2021 埋刮板输送机
评论
0/150
提交评论