版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州市静乐县第一中学2025届高一数学第一学期期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,既是偶函数,又在区间上单调递增的函数为A. B.C. D.2.已知平面α和直线l,则α内至少有一条直线与l()A.异面 B.相交C.平行 D.垂直3.已知函数是奇函数,则A. B.C. D.4.函数()的最大值为()A. B.1C.3 D.45.定义:对于一个定义域为的函数,若存在两条距离为的直线和,使得时,恒有,则称在内有一个宽度为的通道.下列函数:①;②;③;④.其中有一个宽度为2的通道的函数的序号为A.①② B.②③C.②④ D.②③④6.设函数,则下列说法错误的是()A.当时,的值域为B.的单调递减区间为C.当时,函数有个零点D.当时,关于的方程有个实数解7.已知,则的最小值为()A. B.2C. D.48.不等式的解集是()A. B.C. D.9.函数f(x)=x-的图象关于()Ay轴对称 B.原点对称C.直线对称 D.直线对称10.已知集合,且,则的值可能为()A B.C.0 D.1二、填空题:本大题共6小题,每小题5分,共30分。11.函数最小值为______12.已知,则的值为________13.若幂函数图像过点,则此函数的解析式是________.14.已知集合.(1)集合A的真子集的个数为___________;(2)若,则t的所有可能的取值构成的集合是___________.15.计算值为______16.在单位圆中,已知角的终边与单位圆的交点为,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设是实数,(1)证明:f(x)是增函数;(2)试确定的值,使f(x)为奇函数18.已知函数的定义域为(1)当时,求函数的值域;(2)若函数在定义域上是减函数,求的取值范围;(3)求函数在定义域上的最大值及最小值,并求出函数取最值时的值19.已知圆经过点,和直线相切.(1)求圆的方程;(2)若直线经过点,并且被圆截得的弦长为2,求直线的方程.20.已知函数(1)求的值(2)求函数的最小正周期及其图像的对称轴方程(3)对于任意,均有成立,求实数的取值范围21.设函数,且,函数(1)求的解析式;(2)若方程-b=0在[-2,2]上有两个不同的解,求实数b的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】选项A中,函数的定义域为,不合题意,故A不正确;选项B中,函数的定义域为,无奇偶性,故B不正确;选项C中,函数为偶函数,且当x>0时,,为增函数,故C正确;选项D中,函数为偶函数,但在不是增函数,故D不正确选C2、D【解析】若直线l∥α,α内至少有一条直线与l垂直,当l与α相交时,α内至少有一条直线与l垂直当l⊂α,α内至少有一条直线与l垂直故选D3、A【解析】由函数的奇偶性求出,进而求得答案【详解】因为是奇函数,所以,即,则,故.【点睛】本题考查函数的奇偶性,属于基础题4、C【解析】对函数进行化简,即可求出最值.【详解】,∴当时,取得最大值为3.故选:C.5、D【解析】②③可由作图所得,④作图可知有一个宽度为1的通道,由定义可知比1大的通道都存在.6、C【解析】利用二次函数和指数函数的值域可判断A选项;利用二次函数和指数函数的单调性可判断B选项;利用函数的零点个数求出的取值范围,可判断C选项;解方程可判断D选项.【详解】选项A:当时,当时,,当时,,当时,,综上,函数的值域为,故A正确;选项B:当时,的单调递减区间为,当时,函数为单调递增函数,无单调减区间,所以函数的单调递减为,故B正确;选项C:当时,令,解得或(舍去),当时,要使有解,即在上有解,只需求出的值域即可,当时,,且函数在上单调递减,所以此时的范围为,故C错误;选项D:当时,,即,即,解得或,当,时,,则,即,解得,所以当时,关于的方程有个实数解,故D正确.故选:C.7、C【解析】根据给定条件利用均值不等式直接计算作答.【详解】因为,则,当且仅当,即时取“=”,所以的最小值为.故选:C8、B【解析】利用一元二次不等式的解法即得.【详解】由可得,,故不等式的解集是.故选:B.9、B【解析】函数f(x)=x-则f(-x)=-x+=-f(x),由奇函数的定义即可得出结论.【详解】函数f(x)=x-则f(-x)=-x+=-f(x),所以函数f(x)奇函数,所以图象关于原点对称,故选B.【点睛】本题考查了函数的对称性,根据函数解析式特点得出f(-x)=-f(x)即可得出函数为奇函数,属于基础题.10、C【解析】化简集合得范围,结合判断四个选项即可.【详解】集合,四个选项中,只有,故选:C【点睛】本题考查元素与集合的关系,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据,并结合基本不等式“1”的用法求解即可.【详解】解:因为,所以,当且仅当时,等号成立故函数的最小值为.故答案为:12、【解析】∵,∴,解得答案:13、【解析】先用待定系数法设出函数的解析式,再代入点的坐标,计算出参数的值即可得出正确选项.【详解】设幂函数的解析式为,由于函数图象过点,故有,解得,所以该函数的解析式是,故答案为:.【点睛】该题考查的是有关应用待定系数法求幂函数的解析式的问题,属于基础题目.14、①.15②.【解析】(1)根据集合真子集的计算公式即可求解;(2)根据集合的包含关系即可求解.【详解】解:(1)集合A的真子集的个数为个,(2)因为,又,所以t可能的取值构成的集合为,故答案为:15;.15、1;【解析】16、【解析】先由三角函数定义得,再由正切的两角差公式计算即可.【详解】由三角函数的定义有,而.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)1【解析】(1)设x1、x2∈R且x1<x2,用作差法,有f(x1)﹣f(x2)=,结合指数函数的单调性分析可得f(x1)﹣f(x2)<0,可得f(x)的单调性且与a的值无关;(2)根据题意,假设f(x)是奇函数,由奇函数的定义可得,f(﹣x)=﹣f(x),即a﹣=﹣(a﹣),对其变形,解可得a的值,即可得答案【详解】(1)证明:设x1、x2∈R且x1<x2,f(x1)﹣f(x2)=(a﹣)﹣(a﹣)=,又由y=2x在R上为增函数,则>0,>0,由x1<x2,可得﹣<0,则f(x1)﹣f(x2)<0,故f(x)为增函数,与a的值无关,即对于任意a,f(x)在R为增函数;(2)若f(x)为奇函数,且其定义域为R,必有有f(﹣x)=﹣f(x),即a﹣=﹣(a﹣),变形可得2a==2,解可得,a=1,即当a=1时,f(x)为奇函数【点睛】证明函数单调性的一般步骤:(1)取值:在定义域上任取,并且(或);(2)作差:,并将此式变形(要注意变形到能判断整个式子符号为止);(3)定号:判断的正负(要注意说理的充分性),必要时要讨论;(4)下结论:根据定义得出其单调性.18、(1);(2);(3)见解析【解析】(1)函数,所以函数的值域为(2)若函数在定义域上是减函数,则任取且都有成立,即,只要即可,由,故,所以,故的取值范围是;(3)当时,函数在上单调增,无最小值,当时取得最大值;由(2)得当时,在上单调减,无最大值,当时取得最小值;当时,函数在上单调减,在上单调增,无最大值,当时取得最小值.【点睛】利用函数的单调性求值域是求值域的一种重要方法.特别注意当函数含有参数时,而参数又会影响了函数的单调性,从而需要分类讨论求函数的值域19、(1)(x-1)2+(y+2)2=2;(2)x=2或3x-4y-6=0【解析】(1)先求线段AB的垂直平分线方程为,设圆心的坐标为C(a,-a-1),由圆心到点的距离和到切线的距离相等求解即可;(2)由题知圆心C到直线l的距离,进而讨论直线斜率存在不存在两种情况求解即可.试题解析:(1)由题知,线段AB的中点M(1,-2),,线段AB的垂直平分线方程为,即,设圆心的坐标为C(a,-a-1),则,化简,得a2-2a+1=0,解得a=1.∴C(1,-2),半径r=|AC|==∴圆C的方程为(x-1)2+(y+2)2=2.(解二:可设原方程用待定系数法求解)(2)由题知圆心C到直线l的距离,①当直线l的斜率不存在时,直线l的方程为x=2,此时直线l被圆C截得的弦长为2,满足条件.②当直线l的斜率存在时,设直线l的方程为,由题意得,解得k=,∴直线l的方程为y=(x-2)综上所述,直线l的方程为x=2或3x-4y-6=0.点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小20、(1)0;(2);(3).【解析】(1)由三角函数的和差公式,倍角公式,辅助角公式化简原式,带入求值即可.(2)由化简后的表达式代入公式即可求的.(3)恒成立问题,第一步求出函数的单调区间,结合函数性质即可解得.【小问1详解】化简如下:.【小问2详解】由(1)可知,周期,对称轴.【小问3详解】,所以任意,均有,解出函数的单调性增区间,,所以在递增,成立,递减,由对称性可知,所以,所以21、(1),(2)【解析】(1);本题求函数解析式只需利用指数的运算性质求出a的值即可,(2)对于同时含有的表达式,通常可以令进行换元,但换元的过程中一定要注意新元的取值范围,换元后转化为我们熟悉的一元二次的关系,从而解决问题试题解析:解:(1)∵,且∴∵∴(2)法一:方程为令,则-且方程为在有两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年产1500万只液化石油气专用阀智能制造项目可行性研究报告模板-立项备案
- 重庆人文科技学院《民族民间音乐》2022-2023学年第一学期期末试卷
- 重庆人文科技学院《数据挖掘与分析技术》2021-2022学年期末试卷
- 重庆财经学院《统计应用软件》2021-2022学年第一学期期末试卷
- 茶叶制作过程研究报告
- 茶叶冷却工艺研究报告
- 茶叶产品规划方案
- 重庆财经学院《国际物流信息系统》2022-2023学年第一学期期末试卷
- 重庆财经学院《大学体育》2021-2022学年第一学期期末试卷
- 玻璃电视墙施工方案
- 精神分裂症全程治疗
- 家用暖通合同范本
- 康复科一科一品一特色科室活动方案
- 店长数据分析能力培训
- 第11课-西汉建立和“文景之治”【课件】3
- 丝绸之路上的民族学习通超星期末考试答案章节答案2024年
- 化工和危险化学品企业评估分级指南(小微型型企业版)
- 河道水体生态修复治理施工方案
- 劳务派遣人员工作培训及管理方案
- 2024年长春二道区公益性岗位招聘133名工作人员历年高频难、易错点500题模拟试题附带答案详解
- 统编版六年级语文上册《字音辨析》专项测试题带答案
评论
0/150
提交评论