![广西桂梧高中2025届高一上数学期末检测试题含解析_第1页](http://file4.renrendoc.com/view8/M02/11/37/wKhkGWcYHrOABnQdAAHlOCE3S4I195.jpg)
![广西桂梧高中2025届高一上数学期末检测试题含解析_第2页](http://file4.renrendoc.com/view8/M02/11/37/wKhkGWcYHrOABnQdAAHlOCE3S4I1952.jpg)
![广西桂梧高中2025届高一上数学期末检测试题含解析_第3页](http://file4.renrendoc.com/view8/M02/11/37/wKhkGWcYHrOABnQdAAHlOCE3S4I1953.jpg)
![广西桂梧高中2025届高一上数学期末检测试题含解析_第4页](http://file4.renrendoc.com/view8/M02/11/37/wKhkGWcYHrOABnQdAAHlOCE3S4I1954.jpg)
![广西桂梧高中2025届高一上数学期末检测试题含解析_第5页](http://file4.renrendoc.com/view8/M02/11/37/wKhkGWcYHrOABnQdAAHlOCE3S4I1955.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西桂梧高中2025届高一上数学期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数是上的增函数,则实数的取值范围为()A. B.C. D.2.圆与圆的位置关系是()A.外切 B.内切C.相交 D.外离3.全称量词命题“,”的否定为()A., B.,C., D.,4.若,是第二象限的角,则的值等于()A. B.7C. D.-75.公元263年左右,我国数学有刘徽发现当圆内接多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,并创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的“徽率”.某同学利用刘徽的“割圆术”思想设计了一个计算圆周率的近似值的程序框图如图,则输出S的值为(参考数据:)A.2.598 B.3.106C.3.132 D.3.1426.若,则()A. B.C. D.7.若,,,则大小关系为A. B.C. D.8.若函数f(x)=,则f(f())=()A.4 B.C. D.9.如图,四面体中,,且,分别是的中点,则与所成的角为A. B.C. D.10.高斯是德国著名的数学家,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数(),则函数的值域为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为第二象限角,且,则_____12.函数的定义域是_____________13.函数(且)的定义域为__________14.中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形的三条边长分别为、、,则三角形的面积可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦—秦九韶公式,现有一个三角形的边长满足,,则此三角形面积的最大值为______15.用二分法求方程x2=2的正实根的近似解(精确度0.001)时,如果我们选取初始区间是[1.4,1.5],则要达到精确度至少需要计算的次数是______________16.在函数的图像上,有______个横、纵坐标均为整数的点三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱锥P﹣ABC中,PA⊥平面ABC,CA=CB,点D,E分别为AB,AC的中点.求证:(1)DE∥平面PBC;(2)CD⊥平面PAB18.环保生活,低碳出行,电动汽车正成为人们购车的热门选择.某型号的电动汽车在一段平坦的国道上进行测试,国道限速80km/h.经多次测试得到该汽车每小时耗电量M(单位:Wh)与速度v(单位:km/h)的数据如下表所示:v0104060M0132544007200为了描述国道上该汽车每小时耗电量M与速度v的关系,现有以下三种函数模型供选择:①;②;③.(1)当0≤v≤80时,请选出你认为最符合表格中所列数据的函数模型,并求出相应的函数解析式;(2)现有一辆同型号电动汽车从A地全程在高速公路上行驶50km到B地,若高速路上该汽车每小时耗电量N(单位:Wh)与速度v(单位:km/h)的关系满足(80≤v≤120),则如何行驶才能使得总耗电量最少,最少为多少?19.在平面四边形中(如图甲),已知,且现将平面四边形沿折起,使平面平面(如图乙),设点分别为的中点.(1)求证:平面平面;(2)若三棱锥的体积为,求的长.20.已知函数是定义在上的偶函数,且.(1)求实数的值,并证明;(2)用定义法证明函数在上增函数;(3)解关于的不等式.21.某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为,三月底测得凤眼的覆盖面积为,凤眼莲的覆盖面积y(单位:)与月份x(单位:月)的关系有两个函数模型与可供选择(1)试判断哪个函数模型更合适并说明理由,求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据分段函数是上的增函数,则每一段都为增函数,且右侧的函数值不小于左侧的函数值求解.【详解】函数是上增函数,所以,解得,所以实数的取值范围是故选:A.2、C【解析】圆心为和,半径为和,圆心距离为,由于,故两圆相交.3、C【解析】由命题的否定的概念判断.否定结论,存在量词与全称量词互换.【详解】根据全称量词命题的否定是存在量词命题,可得命题“”的否定是“”故选:C.【点睛】本题考查命题的否定,属于基础题.4、B【解析】先由同角三角函数关系式求出,再利用两角差的正切公式即可求解.【详解】因为,是第二象限的角,所以,所以.所以.故选:B5、C【解析】阅读流程图可得,输出值为:.本题选择C选项.点睛:识别、运行程序框图和完善程序框图的思路(1)要明确程序框图的顺序结构、条件结构和循环结构(2)要识别、运行程序框图,理解框图所解决的实际问题(3)按照题目要求完成解答并验证6、A【解析】应用辅助角公式将条件化为,再应用诱导公式求.【详解】由题设,,则,又.故选:A7、D【解析】取中间值0和1分别与这三个数比较大小,进而得出结论【详解】解:,,,,故选:D.【点睛】本题主要考查取中间值法比较数的大小,属于基础题8、C【解析】由题意结合函数的解析式求解函数值即可.【详解】由函数的解析式可得:,.故选C【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题9、B【解析】设为中点,由中位线可知,所以就是所求两条之间所成的角,且三角形为等腰直角三角形你给,所以.考点:空间两条直线所成的角.【思路点晴】求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决10、B【解析】先利用换元思想求出函数的值域,再分类讨论,根据新定义求得函数的值域【详解】(),令,可得,在上递减,在上递增,时,有最小值,又因为,所以当时,,即函数的值域为,时,;时,;时,;的值域是故选:B【点睛】思路点睛:新定义是通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据同角三角函数关系结合诱导公式计算得到答案.【详解】为第二象限角,且,故,.故答案为:.12、.【解析】由题意,要使函数有意义,则,解得:且.即函数定义域为.考点:函数的定义域.13、【解析】根据对数的性质有,即可求函数的定义域.【详解】由题设,,可得,即函数的定义域为.故答案为:14、【解析】计算得出,利用海伦—秦九韶公式可得出,利用基本不等式可求得的最大值.【详解】,所以,.当且仅当时,等号成立,且此时三边可以构成三角形.因此,该三角形面积的最大值为.故答案为:.15、7【解析】设至少需要计算n次,则n满足,即,由于,故要达到精确度要求至少需要计算7次16、3【解析】由题可得函数为减函数,利用赋值法结合条件及函数的性质即得.【详解】因为,所以函数在R上单调递减,又,,,,且当时,,当时,令,则,综上,函数的图像上,有3个横、纵坐标均为整数的点故答案为:3.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】(1)由点D、E分别为AB、AC中点得知DE∥BC,由此证得DE∥平面PBC;(2)要证CD⊥平面PAB,只需证明垂直平面内的两条相交直线与即可.【详解】(1)因为点D、E分别为AB、AC中点,所以DE∥BC又因为DE⊄平面PBC,BC⊂平面PBC,所以DE∥平面PBC(2)因为CA=CB,点D为AB中点,所以CD⊥AB因为PA⊥平面ABC,CD⊂平面ABC,所以PA⊥CD又因为PA∩AB=A,所以CD⊥平面PAB【点睛】本题考查线面平行的证明,线面垂直的证明,属于基础题.垂直、平行关系证明中应用转化与化归思想的常见类型(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.18、(1);(2)这辆车在高速路上的行驶速度为时,该车从地到地的总耗电量最少,最少为.【解析】(1)根据当时,无意义,以及是个减函数,可判断选择,然后利用待定系数法列方程求解即可;(2)利用对勾函数的性质可判断在高速路上的行驶速度为时耗电最少,从而可得答案.【小问1详解】对于,当时,它无意义,所以不合题意;对于,它显然是个减函数,这与矛盾;故选择.根据提供的数据,有,解得,当时,.【小问2详解】高速路段长为,所用时间为,所耗电量为,由对勾函数的性质可知,在上单调递增,所以;故当这辆车在高速路上的行驶速度为时,该车从地到地的总耗电量最少,最少为.19、(1)证明见解析;(2).【解析】(1)先证明平面又,则平面进而即可证明平面平面;(2)由,结合面积体积公式求解即可【详解】(1)在图乙中,平面平面且平面平面,底面又,且平面而分别是中点,平面又平面平面平面.(2)由(1)可知,平面,设,则.,即.20、(1),证明见解析(2)证明见解析(3)【解析】(1)由偶函数性质求,由列方程求,再证明;(2)利用单调性定义证明函数的单调性;(3)利用函数的性质化简可求.【小问1详解】因为函数是定义在R上的偶函数∴,综上,从而【小问2详解】证明:因为设,所以又,∴所以∴在上为增函数;【小问3详解】∵.∵偶函数在上为增函数.在上为减函数∴21、(1)理由见解析,函数模型为;(2)六月份.【解析】(1)由凤眼莲在湖
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025合同模板中央空调销售合同范本
- 北京亿欧网盟科技有限公司-新质生产力系列:2025中国消费级AI硬件价值洞察及GEEK50榜单报告
- 2024年三年级道德与法治下册 第四单元 多样的交通和通信 11四通八达的交通第二课时说课稿 新人教版
- 2024年秋七年级地理上册 第五章 世界的发展差异 5.2《国际经济合作》说课稿2 (新版)湘教版
- 9 古代科技 耀我中华(说课稿)2024-2025学年统编版道德与法治五年级上册
- 养殖设备销售合同范例
- 2024年一年级道德与法治上册 第16课 我有一双明亮的眼睛说课稿 未来版
- 9 种豆子 说课稿-2023-2024学年科学二年级下册冀人版
- 出售电厂锅炉合同范例
- 人员转公司合同范例
- 投标废标培训
- 脑卒中课件完整版本
- 药房保洁流程规范
- 电子信息工程基础知识单选题100道及答案解析
- 血液透析器课件
- 吊车司机雇佣合同协议书
- 新华师大版八年级下册初中数学全册课时练(课后作业设计)
- 致命性大出血急救专家共识
- 住院成人高血糖患者血糖监测医护协议处方共识
- JTS-169-2017码头附属设施技术规范
- DL-T5816-2020分布式电化学储能系统接入配电网设计规范
评论
0/150
提交评论