安庆九一六校2025届数学九年级第一学期开学综合测试模拟试题【含答案】_第1页
安庆九一六校2025届数学九年级第一学期开学综合测试模拟试题【含答案】_第2页
安庆九一六校2025届数学九年级第一学期开学综合测试模拟试题【含答案】_第3页
安庆九一六校2025届数学九年级第一学期开学综合测试模拟试题【含答案】_第4页
安庆九一六校2025届数学九年级第一学期开学综合测试模拟试题【含答案】_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页安庆九一六校2025届数学九年级第一学期开学综合测试模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在中,,,,则的长为()A.3 B.2 C. D.42、(4分)若线段2a+1,a,a+3能构成一个三角形,则a的范围是()A.a>0 B.a>1 C.a>2 D.1<a<33、(4分)若n边形的内角和等于外角和的3倍,则边数n为()A.n=6 B.n=7C.n=8 D.n=94、(4分)如图,已知四边形是平行四边形,下列结论不正确的是()A.当时,它是矩形 B.当时,它是菱形C.当时,它是菱形 D.当时,它是正方形5、(4分)若二次根式有意义,则实数x的取值范围是A.x≠3 B.x>3 C.x≥3 D.x<36、(4分)在四边形ABCD中,对角线AC与BD交于点O,下列各组条件,其中不能判定四边形ABCD是平行四边形的是()A.OA=OC,OB=OD B.OA=OC,AB∥CDC.AB=CD,OA=OC D.∠ADB=∠CBD,∠BAD=∠BCD7、(4分)小杨同学五次数学小测成绩分别是91分、95分、85分、95分、100分,则小杨这五次成绩的众数和中位数分别是()A.95分、95分 B.85分、95分C.95分、85分 D.95分、91分8、(4分)关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两个实数根,则k的取值范围是()A.k≤且k≠1 B.k≤ C.k<且k≠1 D.k<二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知等腰三角形的两条中位线的长分别为2和3,则此等腰三角形的周长为_____.10、(4分)如图,已知点A是反比例函数y在第一象限图象上的一个动点,连接OA,以OA为长,OA为宽作矩形AOCB,且点C在第四象限,随着点A的运动,点C也随之运动,但点C始终在反比例函数y的图象上,则k的值为________.11、(4分)如图,在矩形ABCD中,E是AD的中点,且若矩形ABCD的周长为48cm,则矩形ABCD的面积为______.12、(4分)菱形ABCD的两条对角线长分别为6和4,则菱形ABCD的面积是_____.13、(4分)若函数y=2x+b经过点(1,3),则b=_________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在12×12的正方形网格中,△TAB的顶点坐标分别为T(1,1)、A(2,3)、B(4,2).(1)以点T(1,1)为位似中心,按比例尺(TA′∶TA)3∶1在位似中心的同侧将△TAB放大为△TA′B′,放大后点A、B的对应点分别为A′、B′.画出△TA′B′,并写出点A′、B′的坐标;(2)在(1)中,若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标.15、(8分)如图,以矩形的顶点为坐标原点,所在直线为轴,所在直线为轴,建立平面直角坐标系,已知,,将矩形绕点逆时针方向放置得到矩形.(1)当点恰好落在轴上时,如图1,求点的坐标.(2)连结,当点恰好落在对角线上时,如图2,连结,.①求证:.②求点的坐标.(3)在旋转过程中,点是直线与直线的交点,点是直线与直线的交点,若,请直接写出点的坐标.16、(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)17、(10分)某校八年级一班20名女生某次体育测试的成绩统计如下:成绩(分)60708090100人数(人)15xy2(1)如果这20名女生体育成绩的平均分数是82分,求x、y的值;(2)在(1)的条件下,设20名学生测试成绩的众数是a,中位数是b,求的值.18、(10分)问题提出:(1)如图1,在中,,点D和点A在直线的同侧,,,,连接,将绕点A逆时针旋转得到,连接(如图2),可求出的度数为______.问题探究:(2)如图3,在(1)的条件下,若,,且,,①求的度数.②过点A作直线,交直线于点E,.请求出线段的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,一次函数y=6﹣x与正比例函数y=kx的图象如图所示,则k的值为_____.20、(4分)观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.21、(4分)若一个三角形的三边的比为3:4:5,则这个三角形的三边上的高之比为__________.22、(4分)在中,,,将绕点A按顺时针方向旋转得到旋转角为,点B,点C的对应点分别为点D,点E,过点D作直线AB的垂线,垂足为F,过点E作直线AC的垂线,垂足为P,当时,点P与点C之间的距离是________.23、(4分)某公司招聘英语翻译,听、说、写成绩按3∶3∶2计入总成绩.某应聘者的听、说、写成绩分别为80分,90分,95分(单项成绩和总成绩满分均为百分制),则他的总成绩为____________分.二、解答题(本大题共3个小题,共30分)24、(8分)已知:如图,是的中线,是线段的中点,.求证:四边形是等腰梯形.25、(10分)事业单位人员编制连进必考,现一事业单位需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方而进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲848088乙949269丙818478(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序;(2)该单位规定:笔试、面试、体能分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.26、(12分)如图①,在平面直角坐标系中,点,的坐标分别为,,点在直线上,将沿射线方向平移,使点与点重合,得到(点、分别与点、对应),线段与轴交于点,线段,分别与直线交于点,.(1)求点的坐标;(2)如图②,连接,四边形的面积为__________(直接填空);(3)过点的直线与直线交于点,当时,请直接写出点的坐标.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

根据,可得,再把AB的长代入可以计算出CB的长.【详解】解:∵cosB=,∴BC=AB•cosB=6×=1.故选:D.此题主要考查了锐角三角函数的定义,关键是掌握余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦.2、B【解析】

根据三角形三边关系:任意两边之和大于第三边列出不等式组,解不等式组即可得出a的取值范围.【详解】解:由题意,得,解得a>1.故选B.3、C【解析】

根据n边形的内角和等于外角和的3倍,可得方程180(n-2)=360×3,再解方程即可.【详解】解:由题意得:180(n-2)=360×3,

解得:n=8,

故选:C.此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.4、D【解析】

根据已知及各个四边形的判定对各个选项进行分析从而得到最后答案.【详解】A.正确,对角线相等的平行四边形是矩形;B.正确,对角线垂直的平行四边形是菱形;C.正确,有一组邻边相等的平行四边形叫做菱形;D.不正确,有一个角是直角的平行四边形叫做矩形。故选D此题考查平行四边形的性质,矩形的判定,正方形的判定,解题关键在于掌握判定法则5、A【解析】

被开方数x-3必须是非负数,即x-3≥0,由此可确定被开方数中x的取值范围.【详解】根据题意,得:x-3≥0,解得,x≥3;故选A.主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.6、C【解析】

根据平行四边形的判定方法得出A、B、D正确,C不正确;即可得出结论.【详解】解:A.∵OA=OC,OB=OD∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形),∴A正确,故本选项不符合要求;B.∵AB∥CD∴∠DAO=∠BCO,在△DAO与△BCO中,∴△DAO≌△BCO(ASA),∴OD=OB,

又OA=OC,

∴四边形ABCD是平行四边形,∴B正确,故本选项不符合要求;C.由AB=DC,OA=OC,∴无法得出四边形ABCD是平行四边形.故不能能判定这个四边形是平行四边形,符合题意;∵AB∥DC,D.∵∠ADB=∠CBD,∠BAD=∠BCD∴四边形ABCD是平行四边形(两组对角分别相等的四边形是平行四边形),∴D正确,故本选项不符合要求;故选C.本题考查平行四边形的判定方法;熟练掌握平行四边形的判定方法,并能进行推理论证是解决问题的关键.7、A【解析】

中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:95分出现次数最多,所以众数为95分;排序为:85,91,95,95,100所以中位数为95,故选:.考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8、A【解析】

根据一元二次方程的定义和根的判别式的意义可得,然后求出两个不等式的公共部分即可.【详解】解:根据题意得解得所以k的范围为故选A.本题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;,方程没有实数根,熟知这些是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、14或1【解析】

因为三角形中位线的长度是相对应边长的一半,所以此三角形有一条边为4,一条为6;那么就有两种情况,或腰为4,或腰为6,再分别去求三角形的周长.【详解】解:∵等腰三角形的两条中位线长分别为2和3,∴等腰三角形的两边长为4,6,当腰为6时,则三边长为6,6,4;周长为1;当腰为4时,则三边长为4,4,6;周长为14;故答案为:14或1.此题涉及到三角形中位线与其三边的关系,解答此题时要注意分类讨论,不要漏解.10、−3【解析】

设A(a,b),则ab=,分别过A,C作AE⊥x轴于E,CF⊥x轴于F,根据相似三角形的判定证得△AOE∽△COF,由相似三角形的性质得到OF=,CF=,则k=-OF•CF=-3.【详解】设A(a,b),

∴OE=a,AE=b,

∵在反比例函数y=图象上,

∴ab=,

分别过A,C作AE⊥x轴于E,CF⊥x轴于F,

∵矩形AOCB,

∴∠AOE+∠COF=90°,

∴∠OAE=∠COF=90°−∠AOE,

∴△AOE∽△OCF,

∵OC=OA,

∴===,

∴OF=AE=b,CF=OE=a,

∵C在反比例函数y=的图象上,且点C在第四象限,

∴k=−OF⋅CF=−b⋅a=−3ab=−3.本题考查反比例函数图象上点的坐标特征和矩形的性质,解题的关键是掌握反比例函数图象上点的坐标特征和矩形的性质.11、128【解析】

根据AB=DC,∠A=∠D,AE=DE,利用SAS可判定△ABE≌△DCE,根据全等三角形的性质可得:∠AEB=∠DEC,再根据BE⊥CE,可得:∠BEC=90°,进而可得:∠AEB=∠DEC=45°,因此∠EBC=∠ECD=45°,继而可得:AB=AE,DC=DE,即AD=2AB,根据周长=48,可求得:BC=16,AB=8,最后根据矩形面积公式计算可得:S=16×8=128cm².【详解】∵AB=DC,∠A=∠D,AE=DE,∴△ABE≌△DCE(SAS),∴∠AEB=∠DEC,∵BE⊥CE,

∴∠BEC=90°,

∵∠AEB+∠BEC+∠DEC=180°,∴∠AEB=∠DEC=45°,∴∠EBC=∠ECD=45°,∴AB=AE,DC=DE,即AD=2AB,又∵周长=48,∴BC=16,AB=8,S=16×8=128cm²,故答案为:128.本题主要考查矩形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解决本题的关键是要熟练掌握矩形性质,全等三角形,等腰直角三角形的判定和性质.12、1【解析】

根据菱形的面积等于对角线积的一半,即可求得其面积.【详解】∵菱形ABCD的两条对角线长分别为6和4,∴其面积为4×6=1.故答案为:1.此题考查了菱形的性质.注意熟记①利用平行四边形的面积公式.②菱形面积=ab.(a、b是两条对角线的长度).13、1【解析】由于函数y=2x+b经过点(1,3),故可将点的坐标代入函数解析式,求出b的值.解:将点(1,3)代入y=2x+b得3=2+b,解得b=1.故答案为1.三、解答题(本大题共5个小题,共48分)14、(1)A′坐标为(4,7),B′坐标为(10,4);(2)点C′的坐标为(3a-2,3b-2).【解析】

(1)根据题目的叙述,正确地作出图形,然后确定各点的坐标即可;(2)由(1)中坐标分析出x值变化=3x-2,y值变化=3y-2,从而使问题得解.【详解】解:(1)依题意知,以点T(1,1)为位似中心,按比例尺(TA′:TA)3:1的位似中心的同侧将TAB放大为△TA′B′,故TA′=3TA,B′T=3BT.则延长如图,连结A’B’得△TA′B′.由图可得A′坐标为(4,7),B′坐标为(10,4);(2)易知A、B坐标由A(2,3),B(4,2)变化为A′(4,7),B′(10,4);则x值变化=3x-2,y值变化=3y-2;若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标,则变化后点C的对应点C′的坐标为:C′(3a-2,3b-2)本题难度中等,主要考查了作图-位似变换,正确理解位似变换的定义,会进行位似变换的作图是解题的关键.15、(1)点;(2)①见解析;②点;(3)点,,,.【解析】

(1)由旋转的性质可得,,,由勾股定理可求的长,即可求点坐标;(2)①连接交于点,由旋转的性质可得,,,,,,可得,可证点,点,点,点四点共圆,可得,,,由“”可证;②通过证明点,点关于对称,可求点坐标;(3)分两种情况讨论,由面积法可求,由勾股定理可求的值,即可求点坐标.【详解】解:(1)四边形是矩形,,将矩形绕点逆时针方向旋转得到矩形.,,,点(2)①如图,连接交于点,四边形是矩形,,且,将矩形绕点逆时针方向旋转得到矩形.,,,,,,,点,点,点,点四点共圆,,,,,,,,,且,,②,,,点,点,点共线,点,点关于对称,且点(3)如图,当点在点右侧,连接,过点作于,,设,则,,,,四边形是矩形,,,,,,(负值舍去),,,点,,如图,若点在点左侧,连接,过点作于,,设,则,,,,四边形是矩形,,,,,,,,,点,,综上所述:点,,,本题是四边形综合题,考查了矩形的性质,旋转的性质,全等三角形的判定和性质,勾股定理等知识,还考查了分类讨论思想的应用,考查了数形结合思想的应用,添加恰当辅助线是本题的关键.16、(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形.【解析】【分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,(3)根据勾股定理逆定理解答即可.【详解】(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)三角形的形状为等腰直角三角形,OB=OA1=,A1B==,即OB2+OA12=A1B2,所以三角形的形状为等腰直角三角形.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.17、(1)x=5,y=7;(1)1.【解析】试题分析:(1)根据加权平均数的计算方法列式求出x、y的关系式,再根据x、y都是整数进行求解即可;(1)先根据众数与中位数的概念确定出a、b的值,再代入代数式进行二次根式的化简即可求解.试题解析:解:(1)平均数==81,整理得,8x+9y=103,∵x、y都是整数,∴x=5,y=7;(1)∵90分的有7人,最多,∴众数a=90,按照成绩从低到高,第十个同学的成绩是80分,第十一个同学的成绩是80分,(80+80)÷1=80,∴中位数b=80,∴===1.点睛:本题考查了加权平均数,众数与中位数的概念,本题根据x、y都是整数并求出其值是解题的关键.18、(1)30°;(2)①;②【解析】

(1)由旋转的性质,得△ABD≌,则,然后证明是等边三角形,即可得到;(2)①将绕点A逆时针旋转,使点B与点C重合,得到,连接.与(1)同理证明为等边三角形,然后利用全等三角形的判定和性质,即可得到答案;②由解直角三角形求出,再由等边三角形的性质,即可求出答案.【详解】解:(1)根据题意,∵,,∴是等腰直角三角形,∴,∵,∴,由旋转的性质,则△ABD≌,∴,,,∴,∴是等边三角形,∴,∵,,∴≌,∴,∴;(2)①,.如图1,将绕点A逆时针旋转,使点B与点C重合,得到,连接.,,,,,..,为等边三角形,,,,,.②如图2,由①知,,在中,,.是等边三角形,,,.本题考查了解直角三角形,旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰直角三角形的性质,以及三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确利用旋转模型进行解题.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】

将点A的横坐标代入y=6﹣x可得其纵坐标的值,再将所得点A坐标代入y=kx可得k.【详解】解:设A(1,m).把A(1,m)代入y=6﹣x得:m=﹣1+6=4,把A(1,4)代入y=kx得4=1k,解得k=1.故答案是:1.本题主要考查两条直线相交或平行问题,解题的关键是熟练掌握待定系数法求函数解析式.20、【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++…+1+=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.21、20:15:1.【解析】

根据勾股定理的逆定理得到这个三角形是直角三角形,根据三角形的面积公式求出斜边上的高,然后计算即可.【详解】解:设三角形的三边分别为3x、4x、5x,∵(3x)2+(4x)2=25x2=(5x)2,∴这个三角形是直角三角形,设斜边上的高为h,则×3x×4x=×5x×h,解得,h=,则这个三角形的三边上的高之比=4x:3x:=20:15:1,故答案为:20:15:1.本题考查的是勾股定理的逆定理、三角形的面积计算,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.22、3或1.【解析】

由旋转的性质可知△ACB≌△AED,推出∠CAB=∠EAD=∠CBA,则当∠DAF=∠CBA时,分两种情况,一种是A,F,E三点在同一直线上,另一种是D,A,C在同一条直线上,可分别求出CP的长度.【详解】解:∵AC=BC=10,

∴∠CAB=∠CBA,

由旋转的性质知,△ACB≌△AED,

∴AE=AC=10,∠CAB=∠EAD=∠CBA,

①∵∠DAF=∠CBA,

∴∠DAF=∠EAD,

∴A,F,E三点在同一直线上,如图1所示,

过点C作CH⊥AB于H,

则AH=BH=AB=7,

∵EP⊥AC,

∴∠EPA=∠CHA=90°,

又∵∠CAH=∠EAP,CA=EA,

∴△CAH≌△EAP(AAS),

∴AP=AH=7,

∴PC=AC-AP=10-7=3;

②当D,A,C在同一条直线上时,如图2,

∠DAF=∠CAB=∠CBA,

此时AP=AD=AB=7,

∴PC=AC+AP=10+7=1.

故答案为:3或1.本题考查了旋转的性质,等腰三角形的性质,全等三角形的判定等,解题的关键是能够分类讨论,求出两种情况的结果.23、87.1【解析】分析:运用加权平均数的公式直接计算.用80分,90分,91分,分别乘以3,3,2,再用它们的和除以8即可.详解:由题意知,总成绩=(80×3+90×3+91×2)÷(3+3+2)=87.1(分).故答案为:87.1.点睛:本题考查的是加权平均数的求法.本题易出现的错误是直接求出80,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论