版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题7.1平行线的判定【七大题型】【苏科版】TOC\o"13"\h\u【题型1平行公理及其推论】 1【题型2同位角相等,两直线平行】 2【题型3内错角相等,两直线平行】 4【题型4同旁内角互补,两直线平行】 5【题型5平行线的判定方法的综合运用】 6【题型6角平分线与平行线的判定综合运用】 7【题型7平行线判定的实际应用】 9【知识点平行线的判定】1.平行公理及其推论①经过直线外一点,有且只有一条直线与已知直线平行.②如果两条直线都和第三条直线平行,那么这两条直线也互相平行.2.平行线的判定方法①两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.(同位角相等,两直线平行).②两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.(内错角相等,两直线平行.③两直线被第三条直线所截,如果同旁内角互补,则这两条直线平行.(同旁内角互补,两直线平行.)【题型1平行公理及其推论】【例1】(2022·江西上饶·七年级期中)同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是(
)A.a∥d B.b⊥d C.a⊥d 【变式11】(2022·河南漯河·七年级期末)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b,理由是(
)A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行【变式12】(2022·湖北武汉·七年级期中)下列命题:①内错角相等;②两个锐角的和是钝角;③a,b,c是同一平面内的三条直线,若a//b,b//c,则a//c;④a,b,c是同一平面内的三条直线,若ab,bc,则ac;其中真命题的个数是(
)A.1个 B.2个 C.3个 D.4个【变式13】(2022·四川·甘孜藏族自治州教育局七年级期末)如图,AB∥CD,如果∠1=∠2,那么EF与AB平行吗?说说你的理由.解:因为所以____________∥___________.(
)又因为AB∥所以AB∥EF.(【题型2同位角相等,两直线平行】【例2】(2022·甘肃·陇南育才学校七年级期末)如图,AB⊥MN,垂足为B,CD⊥MN,垂足为D,∠1=∠2.在下面括号中填上理由.因为AB⊥MN,CD⊥MN,所以∠ABM=∠CDM=90°.又因为∠1=∠2(),所以∠ABM−∠1=∠CDM−∠2(),即∠EBM=∠FDM.所以EB∥【变式21】(2022·湖北·蕲春县向桥乡白水中学七年级阶段练习)如图,过直线外一点画已知直线的平行线的方法叫“推平行线”法,其依据是______.【变式22】(2022·山东泰安·七年级期末)如图,AB⊥BC,∠1+∠2=90°,∠2=∠3.请说明线段BE与DF的位置关系?为什么?【变式23】(2022·北京东城·七年级期末)如图,直线l与直线AB,CD分别交于点E,F,∠1是它的补角的3倍,∠1−∠2=90°.判断AB与CD的位置关系,并说明理由.【题型3内错角相等,两直线平行】【例3】(2022·山东·曲阜九巨龙学校七年级阶段练习)如图,点A在直线DE上,AB⊥AC于A,∠1与∠C互余,DE和BC平行吗?若平行,请说明理由.【变式31】(2022·北京市房山区燕山教委八年级期中)如图,已知∠1=75°,∠2=35°,∠3=40°,求证:a∥b.【变式32】(2022·福建·莆田第二十五中学八年级阶段练习)如图,CF是△ABC外角∠ACM的平分线,∠ACB=40°,【变式33】(2022·辽宁·阜新市第十中学七年级期中)如图,AB∥DE,∠1=∠ACB,∠CAB=12∠BAD,试说明AD∥BC【题型4同旁内角互补,两直线平行】【例4】(2022·河北衡水·七年级阶段练习)已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥【变式41】(2022·西藏昂仁县中学七年级期中)如图,∠CAD=20°,∠B=70°,AB⊥AC,求证:AD∥BC.【变式42】(2022·甘肃·平凉市第七中学七年级期中)如图,∠1=30°,∠B=60°,AB⊥AC.(1)∠DAB+∠B等于多少度?(2)AD与BC平行吗?请说明理由.【变式43】(2022·北京市第五中学分校七年级期末)如图,已知点E在BC上,BD⊥AC,EF⊥AC,垂足分别为D,F,点M,G在AB上,GF交BD于点H,∠BMD+∠ABC=180°,∠1=∠2,求证:MD∥GF.下面是小颖同学的思考过程,请补全证明过程并在括号内填上证明依据.证明:∵BD⊥AC,EF⊥AC,∴∠BDC=90°,∠EFC=90°(①).∴∠BDC=∠EFC(等量代换).∴BD∥EF(同位角相等,两直线平行).∴∠2=∠CBD(②).∵∠1=∠2(已知).∴∠1=∠CBD(等量代换).∴③(内错角相等,两直线平行).∵∠BMD+∠ABC=180°(已知),∴MD∥BC(④).∴MD∥GF(⑤).【题型5平行线的判定方法的综合运用】【例5】(2022·广西贺州·七年级期末)如图,有下列条件:①∠1=∠2;②∠3+∠4=180°;③∠5+∠6=180°;④∠2=∠3.其中,能判断直线a∥A.4个 B.3个 C.2个 D.1个【变式51】(2022·浙江台州·七年级期末)在铺设铁轨时,两条直轨必须是互相平行的,如图,已经知道∠2是直角,那么再度量图中已标出的哪个角,不能判断两条直轨是否平行(
)A.∠1 B.∠3 C.∠4 D.∠5【变式52】(2022·山西临汾·七年级期末)在下列图形中,已知∠1=∠2,一定能推导出l1∥lA. B. C. D.【变式53】(2022·山东日照·七年级期末)如图,在下列给出的条件中,不能判定DE∥BC的是(A.∠1=∠2 B.∠3=∠4 C.∠5=∠C D.∠B+∠BDE=180°【题型6角平分线与平行线的判定综合运用】【例6】(2022·吉林·大安市乐胜乡中学校七年级阶段练习)如图,在四边形ABCD中,∠ADC+∠ABC=180°,∠ADF+∠AFD=90°,点E、F分别在DC、AB上,且BE、DF分别平分∠ABC、∠ADC,判断BE、DF是否平行,并说明理由.【变式61】(2022·江苏·扬州市邗江区实验学校七年级期末)将下列证明过程补充完整:已知:如图,点E在AB上,且CE平分∠ACD,∠1=∠2.求证:AB∥证明:∵CE平分∠ACD(已知),∴∠2=∠().∵∠1=∠2(已知),∴∠1=∠().∴AB∥CD(【变式62】(2022·辽宁沈阳·七年级期末)按逻辑填写步骤和理由,将下面的证明过程补充完整如图,直线MN分别与直线AC、DG交于点B、F,且∠1=∠2.∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C.求证:BE∥CF.证明:∵∠1=∠2(已知)∠ABF=∠1(对顶角相等)∠BFG=∠2(____________)∴∠ABF=______(等量代换)∵BE平分∠ABF(已知)∴∠EBF=1∵FC平分∠BFG(已知)∴∠CFB=1∴∠EBF=______∴BE∥CF(____________)【变式63】(2022·内蒙古·扎赉特旗音德尔第三中学七年级期末)如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG平分∠AGC.请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(______),所以∠BAG=∠AGC(______).因为EA平分∠BAG,所以∠1=1因为FG平分∠AGC,所以∠2=1得∠1=∠2(等量代换),所以______(______).【题型7平行线判定的实际应用】【例7】(2022·全国·七年级课时练习)如图,若将木条a绕点O旋转后使其与木条b平行,则旋转的最小角度为()A.65° B.85° C.95° D.115°【变式71】(2022·河南·郑州外国语学校经开校区七年级阶段练习)如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A.如图1,展开后测得∠1=∠2 B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2 D.在图4中,展开后测得∠1+∠2=180°【变式72】(2022·全国·七年级)一辆汽车在广阔的草原上行驶,两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可能是(
)A.第一次向右拐40°,第二次向右拐140°.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 游标卡尺机械课程设计
- 物联网简单应用课程设计
- 智能系统开发课程设计
- 犁体曲面设计课程设计
- 机械制造课程设计底座
- 2024医疗器械产品临床测试与数据采集合同3篇
- 磨床丝杠机械课程设计
- 电力电子课程设计引言
- 2024年火锅店特许经营权出租及转让合同
- 2024年度中小企业专业人才租赁与用工服务合同3篇
- 股东协议明确约定投资人不参与经营管理
- 丹麦门萨权威IQ测试(附参考答案)
- 电气试验110kV交接试验细则
- 外立面装修改造工程施工方案(79页)
- 2737市场调查与商情预测-国家开放大学2018年1月至2021年7月期末考试真题及答案(201801-202107不少于6套)
- 汽车吊接地比压计算
- 跨国公司财务管理课后习题答案
- 人教版(2019)高一物理必修第三册 13.5能量量子化 课件(共18张PPT)
- 沟槽管件尺寸对照表
- 美术教案雄伟的塔教学反思
- (完整版)复变函数与积分变换公式
评论
0/150
提交评论