新疆塔城地区沙湾一中2025届高二数学第一学期期末质量跟踪监视试题含解析_第1页
新疆塔城地区沙湾一中2025届高二数学第一学期期末质量跟踪监视试题含解析_第2页
新疆塔城地区沙湾一中2025届高二数学第一学期期末质量跟踪监视试题含解析_第3页
新疆塔城地区沙湾一中2025届高二数学第一学期期末质量跟踪监视试题含解析_第4页
新疆塔城地区沙湾一中2025届高二数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆塔城地区沙湾一中2025届高二数学第一学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某校初一有500名学生,为了培养学生良好的阅读习惯,学校要求他们从四大名著中选一本阅读,其中有200人选《三国演义》,125人选《水浒传》,125人选《西游记》,50人选《红楼梦》,若采用分层抽样的方法随机抽取40名学生分享他们的读后感,则选《西游记》的学生抽取的人数为()A.5 B.10C.12 D.152.已知双曲线的左右焦点分别是和,点关于渐近线的对称点恰好落在圆上,则双曲线的离心率为()A. B.2C. D.33.设变量,满足约束条件,则目标函数的最大值为()A. B.0C.6 D.84.甲乙两个雷达独立工作,它们发现飞行目标的概率分别是0.9和0.8,飞行目标被雷达发现的概率为()A.0.72 B.0.26C.0.7 D.0.985.用3,4,5,6,7,9这6个数组成没有重复数字的六位数,下列结论正确的有()A.在这样的六位数中,奇数共有480个B.在这样的六位数中,3、5、7、9相邻的共有120个C.在这样的六位数中,4,6不相邻的共有504个D.在这样六位数中,4个奇数从左到右按照从小到大排序的共有60个6.已知,则下列说法中一定正确的是()A. B.C. D.7.在中,,则边的长等于()A. B.C. D.28.记为等差数列的前项和.若,,则的公差为()A.1 B.2C.4 D.89.已知向量,满足条件,则的值为()A.1 B.C.2 D.10.已知,则a,b,c的大小关系为()A. B.C. D.11.已知动圆M与直线y=2相切,且与定圆C:外切,求动圆圆心M的轨迹方程A. B.C. D.12.由下面的条件一定能得出为锐角三角形的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列的公差,等比数列的公比q为正整数,若,,且是正整数,则______14.某中学高一年级有420人,高二年级有460人,高三年级有500人,用分层抽样的方法抽取部分样本,若从高一年级抽取21人,则从高三年级抽取的人数是__________15.不等式的解集为,则________16.已知圆,过点作圆O的切线,则切线方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)讨论函数的单调性;(2)证明:对任意正整数n,18.(12分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD//BC,AB=BC=CD=1,AD=2,直线BC与平面PCD所成角的正弦值为.(1)求证:平面PCD⊥平面PAC;(2)求平面PAB与平面PCD所成锐二面角的余弦值.19.(12分)在①,②这两个条件中任选一个,补充在下面的问题中,并作答.设数列的前项和为,且__________.(1)求数列的通项公式;(2)若,求数列的前项和.20.(12分)已知空间内不重合的四点A,B,C,D的坐标分别为,,,,且(1)求k,t的值;(2)求点B到直线CD的距离21.(12分)已知抛物线E:y2=8x(1)求抛物线的焦点及准线方程;(2)过点P(-1,1)的直线l1与抛物线E只有一个公共点,求直线l1的方程;(3)过点M(2,3)的直线l2与抛物线E交于点A,B.若弦AB的中点为M,求直线l2的方程22.(10分)已知函数(1)当时,讨论的单调性;(2)当时,证明

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据分层抽样的方法,列出方程,即可求解.【详解】根据分层抽样的方法,可得选《西游记》的学生抽取的人数为故选:B.2、B【解析】首先求出F1到渐近线的距离,利用F1关于渐近线的对称点恰落在圆上,可得直角三角形,利用勾股定理得到关于ac的齐次式,即可求出双曲线的离心率【详解】由题意可设,则到渐近线的距离为.设关于渐近线的对称点为M,F1M与渐近线交于A,∴MF1=2b,A为F1M的中点.又O是F1P的中点,∴OA∥F2M,∴为直角,所以△为直角三角形,由勾股定理得:,所以,所以,所以离心率故选:B.3、C【解析】画出可行域,利用几何意义求出目标函数最大值.【详解】画出图形,如图所示:阴影部分即为可行域,当目标函数经过点时,目标函数取得最大值.故选:C4、D【解析】利用对立事件的概率求法求飞行目标被雷达发现的概率.【详解】由题设,飞行目标不被甲、乙发现的概率分别为、,所以飞行目标被雷达发现的概率为.故选:D5、A【解析】A选项,特殊位置优先考虑求出这样的六位数中,奇数个数;B选项,相邻问题捆绑法求解;C选项,不相邻问题插空法求解;D选项,定序问题使用倍缩法求解.【详解】用3,4,5,6,7,9这6个数组成没有重复数字的六位数,个位为3,5,7,9中的一位,有种,其余五个数位上的数字进行全排列,有种,综上:在这样的六位数中,奇数共有个,A正确;在这样的六位数中,3、5、7、9相邻,将3、5、7、9捆绑,有种排法,再与4,6进行全排列,故共有个,B错误;在这样的六位数中,4,6不相邻,先将3、5、7、9进行全排列,再从五个位置中任选两个将4,6排列,综上共有个,C错误;在这样的六位数中,4个奇数从左到右按照从小到大排序的共有个,D错误.故选:A6、B【解析】AD选项,举出反例即可;BC选项,利用不等式的基本性质进行判断.【详解】当,时,满足,此时,故A错误;因,所以,,,B正确;因为,所以,,故,C错误;当,时,满足,,,所以,D错误.故选:B7、A【解析】由余弦定理求解【详解】由余弦定理,得,即,解得(负值舍去)故选:A8、C【解析】根据等差数列的通项公式及前项和公式利用条件,列出关于与的方程组,通过解方程组求数列的公差.【详解】设等差数列的公差为,则,,联立,解得.故选:C.9、A【解析】先求出坐标,进而根据空间向量垂直的坐标运算求得答案.【详解】因为,所以,解得.故选:A.10、A【解析】根据给定条件构造函数,再探讨其单调性并借助单调性判断作答.【详解】令函数,求导得,当时,,于是得在上单调递减,而,则,即,所以,故选:A11、D【解析】由题意动圆M与直线y=2相切,且与定圆C:外切∴动点M到C(0,-3)的距离与到直线y=3的距离相等由抛物线的定义知,点M的轨迹是以C(0,-3)为焦点,直线y=3为准线的抛物线故所求M的轨迹方程为考点:轨迹方程12、D【解析】对于A,两边平方得,由得,即为钝角;对于B,由正弦定理求出,进而求出,可得结果;对于C,根据平方关系将余弦化为正弦,用正弦定理可将角转化为边,进而可得的值,从而作出判断;对于D,由可得,推出,,,故可知三个内角均为锐角【详解】解:对于A,由,两边平方整理得,,因为,所以,所以,所以,所以为钝角三角形,故A不正确;对于B,由,得,所以,因为,所以,所以或,所以或,所以为直角三角形或钝角三角形,故B不正确;对于C,因为,所以,即,由正弦定理得,由余弦定理得,因为,所以,故三角形为钝角三角形,C不正确;对于D,由可得,因为中最多只有一个钝角,所以,,中最多只有一个为负数,所以,,,所以中三个内角都为锐角,所以为锐角三角形,故D正确;故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知等差、等比数列以及,,是正整数,可得,结合q为正整数,进而求.【详解】由,,令,其中m为正整数,有,又为正整数,所以当时,解得,当时,解得不是正整数,故答案为:14、25【解析】由条件先求出抽样比,从而可求出从高三年级抽取的人数.【详解】由题意抽样比例:则从高三年级抽取的人数是人故答案为:2515、【解析】由一元二次方程与一元二次不等式之间的关系可知,方程的两根是,所以因此.考点:一元二次方程与一元二次不等式之间的关系.16、或【解析】首先判断点圆位置关系,再设切线方程并联立圆的方程,根据所得方程求参数k,即可写出切线方程.【详解】由题设,,故在圆外,根据圆及,知:过作圆O的切线斜率一定存在,∴可设切线为,联立圆的方程,整理得,∴,解得或.∴切线方程为或.故答案为:或.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】(1)由,令,得,或,又的定义域为,讨论两个根及的大小关系,即可判定函数的单调性;(2)当时,在,上递减,则,即,由此能够证明【小问1详解】的定义域为,,令,得,或,①当,即时,若,则,递增;若,则,递减;②当,即时,若,则,递减;若,则,递增;若,则,递减;综上所述,当-2<a<0时,f(x)在,单调递减,在单调递增;当a≥0时,f(x)在单调递增,在单调递减.【小问2详解】由(2)知当时,在,上递减,,即,,,,2,3,,,,【点睛】本题考查利用导数研究函数的单调性,本题的关键是令a=1,用已知函数的单调性构造,再令x=恰当地利用对数求和进行解题18、(1)证明见解析(2)【解析】(1)取的中点,连接,证明,由线面垂直的判定定理可证明平面,再利用面面垂直的判定定理可证得结论,(2)过点作于,以为原点,建立空间直角坐标系,如图所示,设,先根据直线BC与平面PCD所成角的正弦值为,求出,然后再求出平面PAB的法向量,利用向量的夹角公式可求得结果【小问1详解】证明:取的中点,连接,因为AD//BC,AB=BC=CD=1,AD=2,所以,∥,所以四边形为平行四边形,所以,所以,因为平面,平面,所以,因为,所以平面,因为平面,所以平面平面,【小问2详解】过点作于,以为原点,建立空间直角坐标系,如图所示,在等腰梯形中,AD//BC,AB=BC=CD=1,AD=2,则,所以设因为平面,所以所以,设平面的法向量为,则,令,则,因为直线BC与平面PCD所成角的正弦值为,所以,解得,所以,,设平面的法向量为,因为,所以,令,则,所以,所以平面PAB与平面PCD所成锐二面角的余弦值为19、(1)答案不唯一,具体见解析(2)答案不唯一,具体见解析【解析】(1)若选①:根据,利用数列通项与前n项和的关系求解;若选②:构造利用等比数列的定义求解;(2)根据(1)得到,再利用错位相减法求解.【小问1详解】解:若选①:,当时,,当时,满足上式,故若选②:易得于是数列是以为首项,2为公比的等比数列,【小问2详解】若选①:由(1)得,从而,,作差得,于是若选②由(1)得,从而,,作差得,于是20、(1),(2)【解析】(1)由,可得存在唯一实数,使得,列出方程组,解之即可得解;(2)设直线与所成的角为,求出,再根据点B到直线CD的距离为即可得解【小问1详解】解:,,因为,所以存在唯一实数,使得,所以,所以,解得,所以,;【小问2详解】解:,则,设直线与所成的角为,则,所以点B到直线CD的距离为.21、(1)焦点为(2,0),准线方程为x=-2;(2)y=1或x-y+2=0或2x+y+1=0;(3)4x-3y+1=0.【解析】(1)根据抛物线的方程及其几何性质,求焦点和准线;(2)分直线l1的斜率为0和不为0两种情况,根据直线与抛物线只有一个公共点,由直线与x轴平行或Δ=0,得解;(3)利用点差法求出直线l2的斜率,即可得直线l2的方程【小问1详解】由题意,p=4,则焦点为(2,0),准线方程为x=-2【小问2详解】当直线l1的斜率为0时,y=1;当直线l1的斜率不为0时,设直线l1为x+1=m(y-1),联立,得y2-8my+8m+8=0,因为直线l1与抛物线E只有一个公共点,所以Δ=64m2-4(8m+8)=0,解得m=1或,所以直线l1的方程为x-y+2=0或2x+y+1=0,综上,直线l1为y=1或x-y+2=0或2x+y+1=0【小问3详解】由题意,直线l2的斜率一定存在,设其斜率为k,A(x1,y1),B(x2,y2),则8x1,8x2,两式作差得:8(x1-x2),即k,所以直线l2为y-3(x-2),即4x-3y+1=022、(1)单调递减,在单调递增;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论