2025届三湘名校教育联盟数学高三上期末学业质量监测试题含解析_第1页
2025届三湘名校教育联盟数学高三上期末学业质量监测试题含解析_第2页
2025届三湘名校教育联盟数学高三上期末学业质量监测试题含解析_第3页
2025届三湘名校教育联盟数学高三上期末学业质量监测试题含解析_第4页
2025届三湘名校教育联盟数学高三上期末学业质量监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届三湘名校教育联盟数学高三上期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数满足:(为虚数单位),则()A. B. C. D.2.曲线上任意一点处的切线斜率的最小值为()A.3 B.2 C. D.13.记为等差数列的前项和.若,,则()A.5 B.3 C.-12 D.-134.若双曲线的渐近线与圆相切,则双曲线的离心率为()A.2 B. C. D.5.函数的图像大致为().A. B.C. D.6.双曲线:(),左焦点到渐近线的距离为2,则双曲线的渐近线方程为()A. B. C. D.7.已知中,角、所对的边分别是,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.既不充分也不必要条件 D.充分必要条件8.已知函数(表示不超过x的最大整数),若有且仅有3个零点,则实数a的取值范围是()A. B. C. D.9.在直角梯形中,,,,,点为上一点,且,当的值最大时,()A. B.2 C. D.10.已知定义在R上的函数(m为实数)为偶函数,记,,则a,b,c的大小关系为()A. B. C. D.11.某人用随机模拟的方法估计无理数的值,做法如下:首先在平面直角坐标系中,过点作轴的垂线与曲线相交于点,过作轴的垂线与轴相交于点(如图),然后向矩形内投入粒豆子,并统计出这些豆子在曲线上方的有粒,则无理数的估计值是()A. B. C. D.12.已知数列满足,(),则数列的通项公式()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的图象在点处的切线方程是,则的值等于__________.14.对于任意的正数,不等式恒成立,则的最大值为_____.15.设函数,若在上的最大值为,则________.16.已知函数恰好有3个不同的零点,则实数的取值范围为____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)新型冠状病毒肺炎疫情发生以来,电子购物平台成为人们的热门选择.为提高市场销售业绩,某公司设计了一套产品促销方案,并在某地区部分营销网点进行试点.运作一年后,对“采用促销”和“没有采用促销”的营销网点各选取了50个,对比上一年度的销售情况,分别统计了它们的年销售总额,并按年销售总额增长的百分点分成5组:,分别统计后制成如图所示的频率分布直方图,并规定年销售总额增长10个百分点及以上的营销网点为“精英店”.(1)请你根据题中信息填充下面的列联表,并判断是否有的把握认为“精英店与采用促销活动有关”;采用促销没有采用促销合计精英店非精英店合计5050100(2)某“精英店”为了创造更大的利润,通过分析上一年度的售价(单位:元)和日销量(单位:件)的一组数据后决定选择作为回归模型进行拟合.具体数据如下表,表中的:①根据上表数据计算的值;②已知该公司成本为10元/件,促销费用平均5元/件,根据所求出的回归模型,分析售价定为多少时日利润可以达到最大.附①:附②:对应一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.18.(12分)在四棱锥中,底面是平行四边形,底面.(1)证明:;(2)求二面角的正弦值.19.(12分)在直角坐标系中,圆的参数方程为:(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆的极坐标方程;(2)若直线:(为参数)被圆截得的弦长为,求直线的倾斜角.20.(12分)已知等比数列中,,是和的等差中项.(1)求数列的通项公式;(2)记,求数列的前项和.21.(12分)已知函数.(1)当时,求不等式的解集;(2)若的图象与轴围成的三角形面积大于6,求的取值范围.22.(10分)P是圆上的动点,P点在x轴上的射影是D,点M满足.(1)求动点M的轨迹C的方程,并说明轨迹是什么图形;(2)过点的直线l与动点M的轨迹C交于不同的两点A,B,求以OA,OB为邻边的平行四边形OAEB的顶点E的轨迹方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

利用复数的乘法、除法运算求出,再根据共轭复数的概念即可求解.【详解】由,则,所以.故选:A【点睛】本题考查了复数的四则运算、共轭复数的概念,属于基础题.2、A【解析】

根据题意,求导后结合基本不等式,即可求出切线斜率,即可得出答案.【详解】解:由于,根据导数的几何意义得:,即切线斜率,当且仅当等号成立,所以上任意一点处的切线斜率的最小值为3.故选:A.【点睛】本题考查导数的几何意义的应用以及运用基本不等式求最值,考查计算能力.3、B【解析】

由题得,,解得,,计算可得.【详解】,,,,解得,,.故选:B【点睛】本题主要考查了等差数列的通项公式,前项和公式,考查了学生运算求解能力.4、C【解析】

利用圆心到渐近线的距离等于半径即可建立间的关系.【详解】由已知,双曲线的渐近线方程为,故圆心到渐近线的距离等于1,即,所以,.故选:C.【点睛】本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题.5、A【解析】

本题采用排除法:由排除选项D;根据特殊值排除选项C;由,且无限接近于0时,排除选项B;【详解】对于选项D:由题意可得,令函数,则,;即.故选项D排除;对于选项C:因为,故选项C排除;对于选项B:当,且无限接近于0时,接近于,,此时.故选项B排除;故选项:A【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.6、B【解析】

首先求得双曲线的一条渐近线方程,再利用左焦点到渐近线的距离为2,列方程即可求出,进而求出渐近线的方程.【详解】设左焦点为,一条渐近线的方程为,由左焦点到渐近线的距离为2,可得,所以渐近线方程为,即为,故选:B【点睛】本题考查双曲线的渐近线的方程,考查了点到直线的距离公式,属于中档题.7、D【解析】

由大边对大角定理结合充分条件和必要条件的定义判断即可.【详解】中,角、所对的边分别是、,由大边对大角定理知“”“”,“”“”.因此,“”是“”的充分必要条件.故选:D.【点睛】本题考查充分条件、必要条件的判断,考查三角形的性质等基础知识,考查逻辑推理能力,是基础题.8、A【解析】

根据[x]的定义先作出函数f(x)的图象,利用函数与方程的关系转化为f(x)与g(x)=ax有三个不同的交点,利用数形结合进行求解即可.【详解】当时,,当时,,当时,,当时,,若有且仅有3个零点,则等价为有且仅有3个根,即与有三个不同的交点,作出函数和的图象如图,当a=1时,与有无数多个交点,当直线经过点时,即,时,与有两个交点,当直线经过点时,即时,与有三个交点,要使与有三个不同的交点,则直线处在过和之间,即,故选:A.【点睛】利用函数零点的情况求参数值或取值范围的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围;(2)分离参数法:先将参数分离,转化成求函数的值域(最值)问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.9、B【解析】

由题,可求出,所以,根据共线定理,设,利用向量三角形法则求出,结合题给,得出,进而得出,最后利用二次函数求出的最大值,即可求出.【详解】由题意,直角梯形中,,,,,可求得,所以·∵点在线段上,设,则,即,又因为所以,所以,当时,等号成立.所以.故选:B.【点睛】本题考查平面向量线性运算中的加法运算、向量共线定理,以及运用二次函数求最值,考查转化思想和解题能力.10、B【解析】

根据f(x)为偶函数便可求出m=0,从而f(x)=﹣1,根据此函数的奇偶性与单调性即可作出判断.【详解】解:∵f(x)为偶函数;∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上单调递增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故选B.【点睛】本题考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间[0,+∞)上,根据单调性去比较函数值大小.11、D【解析】

利用定积分计算出矩形中位于曲线上方区域的面积,进而利用几何概型的概率公式得出关于的等式,解出的表达式即可.【详解】在函数的解析式中,令,可得,则点,直线的方程为,矩形中位于曲线上方区域的面积为,矩形的面积为,由几何概型的概率公式得,所以,.故选:D.【点睛】本题考查利用随机模拟的思想估算的值,考查了几何概型概率公式的应用,同时也考查了利用定积分计算平面区域的面积,考查计算能力,属于中等题.12、A【解析】

利用数列的递推关系式,通过累加法求解即可.【详解】数列满足:,,可得以上各式相加可得:,故选:.【点睛】本题考查数列的递推关系式的应用,数列累加法以及通项公式的求法,考查计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用导数的几何意义即可解决.【详解】由已知,,,故.故答案为:.【点睛】本题考查导数的几何意义,要注意在某点的切线与过某点的切线的区别,本题属于基础题.14、【解析】

根据均为正数,等价于恒成立,令,转化为恒成立,利用基本不等式求解最值.【详解】由题均为正数,不等式恒成立,等价于恒成立,令则,当且仅当即时取得等号,故的最大值为.故答案为:【点睛】此题考查不等式恒成立求参数的取值范围,关键在于合理进行等价变形,此题可以构造二次函数求解,也可利用基本不等式求解.15、【解析】

求出函数的导数,由在上,可得在上单调递增,则函数最大值为,即可求出参数的值.【详解】解:定义域为,在上单调递增,故在上的最大值为故答案为:【点睛】本题考查利用导数研究函数的单调性与最值,属于基础题.16、【解析】

恰好有3个不同的零点恰有三个根,然后转化成求函数值域即可.【详解】解:恰好有3个不同的零点恰有三个根,令,,在递增;,递减,递增,时,在有一个零点,在有2个零点;故答案为:.【点睛】已知函数的零点个数求参数的取值范围是重点也是难点,这类题一般用分离参数的方法,中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)列联表见解析,有把握;(2)①;②元时【解析】

(1)直接由题意列出列联表,通过计算,可判断精英店与采用促销活动是否有关.(2)①代入表中数据,结合公式求出;②由①中所得的线性回归方程,若售价为,单价利润为,日销售量为,进而可求出日利润,结合导数可求最值.【详解】解:(1)由题意知,采用促销中精英店的数量为,采用促销中非精英店的数量为;没有采用促销中精英店的数量为,没有采用促销中非精英店的数量为,列联表为采用促销没有采用促销合计精英店352055非精英店153045合计5050100因为有的把握认为“精英店与采用促销活动有关”.(2)①由公式可得:所以回归方程为②若售价为,单件利润为,日销售为,故日利润,解得.当时,单调递增;当时,单调递减.故当售价元时,日利润达到最大为元.【点睛】本题考查了独立性检验,考查了线性回归方程的求法,考查了函数最值的求解.在求函数的最值时,常用的方法有:函数图像法、结合函数单调性分析最值、基本不等式法、导数法.其中最常用的还是导数法.18、(1)见解析(2)【解析】

(1)利用正弦定理求得,由此得到,结合证得平面,由此证得.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值,再转化为正弦值.【详解】(1)在中,由正弦定理可得:,,底面,平面,;(2)以为坐标原点建立如图所示的空间直角坐标系,,设平面的法向量为,由可得:,令,则,设平面的法向量为,由可得:,令,则,设二面角的平面角为,由图可知为钝角,则,,故二面角的正弦值为.【点睛】本小题主要考查线线垂直的证明,考查空间向量法求二面角,考查空间想象能力和逻辑推理能力,属于中档题.19、(1);(2)或【解析】

(1)消去参数可得圆的直角坐标方程,再根据,,即可得极坐标方程;(2)写出直线的极坐标方程为,代入圆的极坐标方程,根据极坐标的意义列出等式解出即可.【详解】(1)圆:,消去参数得:,即:,∵,,.∴,.(2)∵直线:的极坐标方程为,当时.即:,∴或.∴或,∴直线的倾斜角为或.【点睛】本题主要考查了参数方程化为普通方程,直角坐标方程化为极坐标方程以及极坐标的几何意义,属于中档题.20、(1)(2)【解析】

(1)用等比数列的首项和公比分别表示出已知条件,解方程组即可求得公比,代入等比数列的通项公式即可求得结果;(2)把(1)中求得的结果代入bn=an•log2an,求出bn,利用错位相减法求出Tn.【详解】(1)设数列的公比为,由题意知:,∴,即.∴,即.(2),∴.①.②①-②得∴.【点睛】本题考查等比数列的通项公式和等差中项的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论