版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省佛山市禅城区佛山实验中学2025届高一数学第一学期期末达标检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,且x为第四象限的角,则tanx的值等于A. B.-C. D.-2.函数f(x)=2x+x-2的零点所在区间是()A. B.C. D.3.函数(且)与函数在同一个坐标系内的图象可能是A. B.C. D.4.设,,,则a,b,c的大小关系是()A. B.C. D.5.已知,那么下列结论正确的是()A. B.C. D.6.设实数满足,函数的最小值为()A. B.C. D.67.一个多面体的三视图分别为正方形、等腰三角形和矩形,如图所示,则该多面体的体积为A.24cm3 B.48cm3C.32cm3 D.96cm38.已知定义在R上的函数是奇函数,设,,,则有()A. B.C. D.9.某几何体的三视图如图所示,则该几何体的表面积为()A. B.C. D.10.方程的零点所在的区间为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若关于x的方程有两个不同的实根,则实数m的取值范围是______12.下列命题中正确的是________(1)是的必要不充分条件(2)若函数的最小正周期为(3)函数的最小值为(4)已知函数,在上单调递增,则13.给出下列命题:①存在实数,使;②函数是偶函数;③若是第一象限的角,且,则;④直线是函数的一条对称轴;⑤函数的图像关于点成对称中心图形.其中正确命题序号是__________.14.不等式的解集为_________________.15.函数是幂函数,且在上是减函数,则实数__________.16.已知函数在上的最大值为2,则_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,(1)用,表示;(2)求18.已知集合,,.(1)求,(2)若,求实数a的取值范围19.如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(Ⅰ)证明:BC1//平面A1CD;(Ⅱ)设AA1=AC=CB=2,AB=2,求三棱锥C一A1DE的体积.20.对于函数f(x),若在定义域内存在实数x0,满足f(-x0)=-f(x(1)已知函数f(x)=sin(x+π3)(2)设f(x)=2x+m是定义在[-1,1]上的“M(3)若f(x)=log2(x221.已知圆O:,点,点,直线l过点P(1)若直线l与圆O相切,求l的方程;(2)若直线l与圆O交于不同的两点A,B,线段AB的中点为M,且M的纵坐标为-,求△NAB的面积
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】∵x为第四象限的角,,于是,故选D.考点:商数关系2、C【解析】根据函数零点的存在性定理可得函数零点所在的区间【详解】解:函数,,(1),根据函数零点的存在性定理可得函数零点所在的区间为,故选C【点睛】本题主要考查函数的零点的存在性定理的应用,属于基础题3、C【解析】利用指数函数和二次函数的性质对各个选项一一进行判断可得答案.【详解】解:两个函数分别为指数函数和二次函数,其中二次函数的图象过点,故排除A,D;二次函数的对称轴为直线,当时,指数函数递减,,C符合题意;当时,指数函数递增,,B不合题意,故选C【点睛】本题通过对多个图象的选择考查指数函数、二次函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.4、C【解析】先判断,再判断得到答案.【详解】;;;,即故选:【点睛】本题考查了函数值的大小比较,意在考查学生对于函数性质的灵活运用.5、B【解析】根据不等式的性质可直接判断出结果.【详解】,,知A错误,B正确;当时,,C错误;当时,,D错误.故选:B.6、A【解析】将函数变形为,再根据基本不等式求解即可得答案.详解】解:由题意,所以,所以,当且仅当,即时等号成立,所以函数的最小值为.故选:A【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方7、B【解析】由三视图可知该几何体是一个横放的直三棱柱,利用所给的数据和直三棱柱的体积公式即可求得体积.【详解】由三视图可知该几何体是一个横放的直三棱柱,底面为等腰三角形,底边长为,底面三角形高为,所以其体积为:.故选:B【点睛】本题考查三视图及几何体体积计算,认识几何体的几何特征是解题的关键,属于基础题.8、D【解析】根据函数是奇函数的性质可求得m,再由函数的单调性和对数函数的性质可得选项.【详解】解:因为函数的定义在R上的奇函数,所以,即,解得,所以,所以在R上单调递减,又因为,,所以故选:D.9、C【解析】根据三视图,作出几何体的直观图,根据题中条件,逐一求解各个面的表面积,综合即可得答案.【详解】根据三视图,作出几何体的直观图,如图所示:由题意得矩形的面积,矩形的面积,矩形的面积,正方形、的面积,五边形的面积,所以该几何体的表面积为,故选:C10、C【解析】分析函数的单调性,利用零点存在定理可得出结论.【详解】因为函数、均为上的增函数,故函数在上也为增函数,因为,,,,由零点存在定理可知,函数的零点所在的区间为.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意在同一个坐标系中作出两个函数的图象,图象交点的个数即为方程根的个数,由图象可得答案【详解】解:由题意作出函数的图象,关于x的方程有两个不同的实根等价于函数与有两个不同的公共点,由图象可知当时,满足题意,故答案为【点睛】本题考查方程根的个数,数形结合是解决问题的关键,属基础题12、(3)(4)【解析】对于(1)对角取特殊值即可验证;对于(2)采用数形结合即可得到答案;对于(3)把函数进行化简为关于的函数,再利用基本不等式即可得到答案;对于(4)用整体的思想,求出单调增区间为,再让即可得到答案.【详解】对于(1),当,当,不满足是的必要条件,故(1)错误;对于(2),函数的最小正周期为,故(2)错误;对于(3),,当且仅当等号成立,故(3)正确;对于(4)函数的单调增区间为,若在上单调递增,则,又,故(4)正确.故答案为:(3)(4).13、④⑤【解析】根据两角和与差的正弦公式可得到sinα+cosαsin(α)结合正弦函数的值域可判断①;根据诱导公式得到=sinx,再由正弦函数的奇偶性可判断②;举例说明该命题正误可判断③;x代入到y=sin(2xπ),根据正弦函数的对称性可判断④;x代入到,根据正切函数的对称性可判断⑤.【详解】对于①,sinα+cosαsin(α),故①错误;对于②,=sinx,其为奇函数,故②错误;对于③,当α、β时,α、β是第一象限的角,且α>β,但sinα=sinβ,故③错误;对于④,x代入到y=sin(2xπ)得到sin(2π)=sin1,故命题④正确;对于⑤,x代入到得到tan()=0,故命题⑤正确.故答案为④⑤【点睛】本题考查了三角函数的图象与性质的应用问题,也考查了三角函数的化简与求值问题,是综合性题目14、或.【解析】利用一元二次不等式的求解方法进行求解.【详解】因为,所以,所以或,所以不等式的解集为或.故答案为:或.15、2【解析】根据函数为幂函数求参数m,讨论所求得的m判断函数是否在上是减函数,即可确定m值.【详解】由题设,,即,解得或,当时,,此时函数在上递增,不合题意;当时,,此时函数在上递减,符合题设.综上,.故答案为:216、1【解析】先求导可知原函数在上单调递增,求出参数后即可求出.【详解】解:在上在上单调递增,且当取得最大值,可知故答案为:1三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】先把指数式化为对数式求出的值,再利用对数的运算性质进行求解【小问1详解】解:,,,【小问2详解】解:,,,18、(1);;(2).【解析】(1)解不等式化简集合B,再利用交集、并集、补集的定义直接计算作答.(2)由已知可得,再利用集合的包含关系列式计算作答.【小问1详解】解得:,则,而,所以,或,.【小问2详解】,因,则,于是得,所以实数a的取值范围是.19、(Ⅰ)见解析(Ⅱ)【解析】(Ⅰ)连接AC1交A1C于点F,则DF为三角形ABC1的中位线,故DF∥BC1.再根据直线和平面平行的判定定理证得BC1∥平面A1CD.(Ⅱ)由题意可得此直三棱柱的底面ABC为等腰直角三角形,由D为AB的中点可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D⊥DE.进而求得S△A1DE的值,再根据三棱锥C-A1DE的体积为•S△A1DE•CD,运算求得结果试题解析:(1)证明:连结AC1交A1C于点F,则F为AC1中点又D是AB中点,连结DF,则BC1∥DF.3分因DF⊂平面A1CD,BC1不包含于平面A1CD,4分所以BC1∥平面A1CD.5分(2)解:因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D为AB的中点,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.8分由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D10分所以三菱锥C﹣A1DE的体积为:==1.12分考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积20、(1)函数f(x)=sin(x+π3)是“M【解析】(1)由f(-x)=-f(x),得sin(-x+π3)=-(2)由题存在实数x0∈[-1,1]满足f(-x0)=-f(x0),即方程2xm取最小值-(3)由题即存在实数x0,满足f(-x0)=-f(x0)试题解析:(1)由f(-x)=-f(x),得:sin所以3所以存在x0=所以函数f(x)=sin(x+π(2)因为f(x)=2x+m是定义在[-1,1]所以存在实数x0∈[-1,1]满足即方程2x+2令t=则m=-12(t+1t),因为所以当t=12或t=2时,m(3)由x2-2mx>0对x≥2因为若f(x)=log2(所以存在实数x0,满足①当x0≥2时,-x0因为函数y=12x-4②当-2<x0<2时,-2<-③当x0≤-2时,-x0因为函数y=-12综上所述,实数m的取值范围是[-1,1)点睛:已知方程有根问题可转化为函数有零点问题,求参数常用的方法和思路有:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成函数的值域问题解决;(3)数形结合法:先对解析式变形,在同一个平面直角坐标系中,画出函数图像,然后数形结合求解.21、(1)或(2)【解析】(1)根据题意,分直线斜率存在与不存在两种情况讨论求解,当直线斜率存在时,根据点到直线的距离公式求参数即可;(2)设直线l方程为,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 东北三省精准教学2024年12月高三联考语文试卷(含答案详解)
- 建筑模板工程借款合同
- 2024年度医疗耗材批量采购协议版B版
- 2024年全球航空承运条款与条件合同版
- 2024至2030年网络分析器项目投资价值分析报告
- 2024年会展服务细节化协议样本版B版
- 2024至2030年环境监理办公系统项目投资价值分析报告
- 2024年出版发行合同:出版物内容、发行渠道及版税分配
- 2024至2030年卡式录音机部件项目投资价值分析报告
- 2024年广东省汕头市金平区东方街道招聘社区工作者考前自测高频考点模拟试题(共500题)含答案
- 常见有机化合物的表面张力
- 井下压风、供水、排水及注氮管路管理规定
- 人教版四年级数学期中复习-完整版PPT
- 铁路线路工更换混凝土轨枕作业指导书
- 中考英语作文专题(观点型议论文)课件
- 临时用电作业工作票
- 古建构件名词大全
- 公司“青年安全生产示范岗”创建考核评分表
- 人工智能技术在医学领域的应用PPT
- 工行网银安装步骤
- 《土地宝忏》2019版定稿
评论
0/150
提交评论