浅谈人行天桥荷载试验检测_第1页
浅谈人行天桥荷载试验检测_第2页
浅谈人行天桥荷载试验检测_第3页
浅谈人行天桥荷载试验检测_第4页
浅谈人行天桥荷载试验检测_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浅谈人行天桥荷载试验检测一、桥梁检验收检测意义桥梁竣工验收需要进行进行验收荷载试验,其目的有三个方面:1、通过荷载试验以检验现有结构承载能力是否达到了设计荷载保准.2、根据静荷载试验观测了解结构的实际受力状况和工作性能,为桥梁营运养护提供科学依据。3、经过对试验资料的对比、分析,为同内桥梁的设计、施工积累可靠资料。二、桥梁荷载试验检测工作方案1、根据桥梁竣工图,实测桥梁竣工数据,同时根据竣工图文件建立桥梁荷载试验计算模型,确定荷载试验检测部位,计算理论值。2、拟定荷载试验工作方案,根据桥梁等级,设计标准,按照规范要求进行车辆布置。3、实施荷载试验,根据工作方案进行外业试验,收集关键试验成果。4、根据试验结果与理论计算结果进行比较,分析,最终得出桥梁评估报告.三、以下以某城市人行天桥荷载试验为案例进行论述研究(一)、概述该人行天桥位于某小区1、2街区处,为一“H”型结构天桥,主要连接某小区1、2街区与某小学周边的人流过往,天桥主梁全长49.7米.桥面横向全宽4。2米,净宽4.0米;梯道全宽2.7米,净宽2.5米;桥下净高大于5米.桥上设置最大1%的桥面纵坡和1。0%的双向横坡。桥梁设计荷载为:人群:4。5kN/㎡。天桥主梁、梯道梁均为钢结构,由钢板焊接组合而成.上部结构为等截面钢箱梁,梁高为0。9米,箱梁顶宽4。2米,底宽1。8米.梯道梁高0.3米,宽0。8米。天桥箱梁顶板、底板、腹板和墩顶加密横隔板及其余部位均采用Q345qc钢。钢梯道及平台的顶底板和腹板均采用Q345qc钢.该天桥主墩结构为花瓶式钢筋混凝土桥墩,顶部宽度为1.8米根部宽度1米,厚0.8米,桩基直径为1.2米。梯道墩结构为矩形墩,尺寸为0.6×0。6米,桩基直径为1.0米。1。1技术标准净宽:桥面宽:4。2米梯道全宽:2。7米桥下净高:≥5米。设计荷载:人群:4.5KN/㎡。横断面布置:主梁:0。1m(栏杆)+4。0m(人行道)+0。1m梯道:0。1m(栏杆)+2.5m(人行道)+0.1m(栏杆)=2。7m结构安全等级:二级.地震动峰值加速度:ag=0。05g。抗震设防烈度:≥6度。结构使用年限:50年.1.2设计要点:桥型方案新溉路(鲁能1、2街区)人行天桥为一“H”型结构天桥,主要连接鲁能星城1、2街区与天宫殿小学周边的人流过往,天桥主梁全长49。7米。桥面横向全宽4。2米,净宽4.0米;梯道全宽2.7米,净宽2.5米。桥上设置最大1%的桥面纵坡和1。0%的双向横坡。1.3结构型式1。3.1上部结构天桥主梁、梯道梁均为钢结构,由钢板焊接组合而成.上部结构为等截面钢箱梁,梁高为0.9米,箱梁顶宽4。2米,底宽1。8米。梯道梁高0。3米,宽0.8米.天桥箱梁顶板、底板、腹板和墩顶加密横隔板及其余部位均采用Q345qc钢。钢梯道及平台的顶底板和腹板均采用Q345qc钢.1.3。2下部结构主墩结构为花瓶式钢筋混凝土桥墩,顶部宽度为1。8米根部宽度1米,厚0.8米,桩基直径为1。2米.梯道墩结构为矩形墩,尺寸为0。6×0.6米,桩基直径为1。0米。1.4主要材料1.4.1钢材主梁、梯道:Q345qc、Q235qc栏杆:Q235B钢筋:R235、HRB335分别满足GB1499-1998、GB13013—1991标准。(二)、实验依据《城市桥梁养护技术规范》(CJJ99-2003、J281-2003);《城市人行天桥与人行地道技术规范》(CJJ69—95);《建筑结构检测技术标准》(GB/T50344—2004);《城市桥梁设计准则》(CJJ11-93);《城市桥梁设计荷载标准》(CJJ77-98);《市政桥梁工程质量检验评定标准》(CJJ2-90);《钢结构设计规范》(GB50017-2003);《钢结构工程施工质量验收规范》(GB50205-2001);《建筑变形测量规范》(JGJ8-2007);《工程测量规范》(GB50026—2007);《建筑钢结构焊接技术规程》(JGJ81—2002)。根据天桥的具体结构和现状,验收性荷载试验按照建设部颁发的规定的原则、方法、内容进行试验,同时依据桥梁设计单位提供的计算资料并按上述“方法”所规定的指标对试验结果予以评价。(三)、试验项目与观测内容为全面评价桥梁结构的整体性能,了解结构实际工作状况和综合评定工程质量,保证桥梁营运安全,应对城市新建桥梁进行验收性荷载试验。根据桥梁竣工文件提供资料,首先进行计算机建模,模拟桥梁在试验荷载下各个截面的应力及挠。具体试验内容包括:在试验荷载作用下进行:1、箱梁25m跨最大正弯矩截面(距1#墩10m)、22m跨最大正弯矩截面(距3#墩8.8m)、2#中墩支点附近负弯矩截面的应力观测;2、箱梁25m跨最大正弯矩截面(距1#墩10m)、22m跨最大正弯矩截面(距3#墩8.8m)的挠度.(四)、观测截面及测点布置根据人行天桥的结构特点及现场具体情况,本着对全桥评价的原则,决定对两跨均进行荷载试验,选取两跨的最大正弯矩截面及2#中墩墩顶附近等共计3个试验截面作为试验控制截面,其检验结果可用于评价全桥。检测内容主要包括:钢箱梁梁体应力(应变),挠度观测等。具体截面及观测内容详见图1与表1。图1某人行天桥试验截面示意图(单位:cm)图1中:K1为25m跨最大正弯矩截面.K2为2#墩支点附近截面,K3为22m跨最大正弯矩截面。表1试验观测截面和观测内容序号观测部位观测截面箱梁钢板应力观测挠度观测裂缝观测1跨中K1√√√2跨中K2√√√3支点K3√/√测点布置时均采用钢箱梁表面粘贴应变片观测应力,试验截面测点布置如下图所示。图2钢箱梁正弯矩截面(K1、K3)测点布置图图3钢箱梁负弯矩截面(K2)测点布置图(五)、观测方法与仪器1、挠度观测:采用精密水准仪进行观测;2、箱梁应力观测:采用在箱梁下缘底部钢板表面粘贴短标距应变片的测量方式。以静态电阻应变仪自动扫描观测钢板的应变,再根据箱板弹性模量换算为相应应力。(一)应力测试系统YE2539静态应变仪应变片打印YE2539静态应变仪应变片打印 (二)挠度测试系统精密水准仪精密水准仪记录图4测试系统框架图(六)、试验荷载与荷载布置荷载试验按照设计施工图计算,根据该桥的具体位置及周边状况,试验荷载决定采用水箱加载的方法进行,以设计荷载内力作为试验控制内力确定加载位置及重量,计算确定最大加载重量81。78吨;按照1。74吨/沿米进行布载,具体布载位置如下所示:按“方法”规定,试验荷载效率应满足0。8≤η≤1.05的要求,本次试验取1。0。荷载施加时对3试验控制截面分别进行,根据桥面宽度(见图5)。每种工况分为2~3级,每级荷载就位后约5分钟进行各项观测,卸载后约10分钟进行残余观测和调零,再继续下一工况。图5水箱加载横向对称布荷示意图表2荷载工况表序号荷载工况125m跨最大正弯矩截面对称加载22#墩支点最大负弯矩截面对称加载322m跨最大正弯矩截面对称加载图625m跨最大正弯矩截面纵向示意图图72#墩顶负弯矩截面加载纵向示意图图822m跨最大正弯矩截面纵向示意图表3荷载试验相关计计算值控制截面加载工况加载重量kg设计弯矩kN。m试验弯矩kN.m荷载效率应力计算值MPa挠度计算值mmK125m跨水深58cm435002112。22041.80。9767.932。7K322m跨水深58cm382801698.11641。50.9754.621.0K2全桥满载81780—2515.6-2431.70。97上缘25。5/下缘—80.8注:表中数据由结构计算得出(七)、静荷载试验7.1试验的内容(1)箱梁25m跨最大正弯矩截面(距1#墩10m)、22m跨最大正弯矩截面(距3#墩8.8m)、2#中墩支点负弯矩截面(距2#墩0。5m)的应力观测;(2)箱梁25m跨最大正弯矩截面(距1#墩10m)、22m跨最大正弯矩截面(距3#墩8。8m)的挠度值。7。2观测截面及测点布置根据某(某小区1、2街)人行天桥的结构特点及现场具体情况,本着对全桥评价的原则,决定对两跨均进行荷载试验,选取两跨的最大正弯矩截面及2#中墩墩顶附近等共计3个试验截面作为试验控制截面,其检验结果可用于评价全桥。检测内容主要包括:钢箱梁梁体应力(应变)及挠度观测等。具体截面及观测内容详见图7。2-1~图7。2-3与表7。3.图7。2-1某人行天桥试验截面示意图(单位:cm)图7.2-1中:K1为25m跨最大正弯截面,K2为2#墩支点附近截面,K3为22m跨最大正弯截面。测点布置时均采用在钢箱梁表面粘贴应变片观测应力,试验截面测点布置如下图所示。图7。2-2钢箱梁正弯矩截面(K1、K3)测点布置图图7.2—3钢箱梁负弯矩截面(K2)测点布置图7。3观测内容表7。3观测项目及内容表编号观测项目具体观测内容1箱梁应力试验荷载作用下,箱梁最大正弯矩截面(K1、K3)的应力观测,2#墩顶负弯矩截面(K2)的应力观测2箱梁挠度试验荷载作用下,箱梁最大正弯矩截面(K1、K3)的挠度观测7。4观测方法与仪器(1)挠度观测:采用精密水准仪进行观测;(2)箱梁应力观测:采用在箱梁下缘底部钢板表面粘贴短标距应变片的测量方式。以静态电阻应变仪自动扫描观测钢板的应变,再根据箱板弹性模量换算为相应应力。7.5采用的观测系统静态应变仪应变片打印输出(1)应力测试系统:静态应变仪应变片打印输出精密水准仪精密水准仪yinnaoduyi记录图7。5测试系统框图7。6试验荷载与荷载布置荷载试验采用均布荷载以设计荷载计算内力作为试验内力控制值,根据该桥的具体位置及周边情况,试验荷载决定采用水箱加载的方法进行,水箱加载宽度3m,按照各测截面内力等效原则,共用水84吨,各试验控制截面荷载效率均达到0。97,满足“试验方法”中对基本荷载试验规定的要求,其检验结果可用于桥梁承载能力的评价。荷载施加时对三个控制截面分别进行,先进行25m跨最大正弯矩截面加载,荷载就位后约5分钟进行各项观测,再进行全桥满载工况,满载后先卸25m跨,卸载后约10分钟后进行22m跨满载工况试验数据观测,然后全桥卸载,约10分钟后进行残余观测.图7.6—1水箱加载横向对称布荷示意图表7。6—1静载试验加载工况序号控制截面工况分级对应载位位置125m最大正弯矩截正载1级25m跨水深29cm225m最大正弯矩截正载2级25m跨水深58cm322m跨最大正弯矩截正载3级25m跨满载+22m跨水深29cm42#墩顶截面正载4级25m/22m跨水深58cm522m跨最大正弯矩截正载5级25m跨卸载,22m跨水深58cm表7。6-2荷载试验相关计算值控制截面加载工况加载重量kg设计弯矩kN.m试验弯矩kN。m荷载效率应力计算值MPa挠度计算值mmK125m跨水深58cm435002112.22041.80.9767。932。7K322m跨水深58cm382801698。11641.50.9754。621。0K2全桥满载81780-2515.6—2431。70。97上缘25.5/下缘—80.8注:表中设计弯矩值及挠度计算值根据计算确定,钢板应力根据截面特性计算得出.表中应力符号“+"为受拉,“—”为受压,钢板弹性摸量取值2。06×105MPa。图7。6—225m跨最大正弯矩截面加载纵向示意图(单位:cm)图7。6-32#墩顶附近负弯矩截面加载纵向示意图(单位:cm)图7。6—422m跨最大正弯矩截面加载纵向示意图(单位:cm)7.7试验结果与分析在各级试验荷载作用下跨中控制截面箱梁底板应力观测结果列于表7。7.1-1~表7。7.1—3中,挠度观测结果列于表7。7.2—1~表7.7。2—2中。应力符号“+”为受拉,“-"为受压,挠度符号向下为“+”,向上为“-”,钢板弹性模量取值E=2。06xlO5MPa。表中应力单位为MPa,挠度单位为mm。所有应力测点均采用半桥自补偿.7.7.1应力测试结果表7.7.1—125m跨钢箱梁应力观测结果单位:MPa测点工况腹板—1底板—1底板—2底板—3腹板-2K125m跨水深58cm61.863。8665。9259.7461。8计算值67.967.967.967.967.9校验系数0.910.940.970.880.91表7.7。1—222m跨钢箱梁应力观测结果单位:MPa测点工况腹板—1底板-1底板-2底板—3腹板—2K325m跨卸载,22m跨水深58m53.5649。4451.551.547。38计算值54.654.654.654.654。6校验系数0.980。910.940.940。87表7。7.1—3墩顶附近钢箱梁应力观测结果单位:MPa测点工况腹板下缘—1腹板下缘—2翼缘—1翼缘-2K2全桥满载78。2876。2224。7222.66计算值80.880。825。525.5校验系数0.970。940.970.897。7。2挠度测试结果表7.7。2—1钢箱梁25m挠度观测结果单位:mm测点工况桥面—1桥面—2KK125m跨水深58cm30.330.1计算值32.732。7校验系数0。930。92残余3.33。5相对残余10.89%11。63%表7。7.2—2钢箱梁22m挠度观测结果单位:mm测点工况桥面—1桥面—2K325m跨卸载,22m跨水深58cm19。819。5计算值2121校验系数0.940。93残余2。02.0相对残余10.10%11。28%7.7。5裂缝观测结果在所施加最大试验荷载作用下,未发现钢箱梁产生异响及焊缝开裂。7。7。6分析比较某(某小区1、2街)人行天桥在最大试验荷载作用下,钢箱梁结构表现出了正常的受力性能,25m跨最大正弯矩控制截面实测箱梁钢板应力平均值低于该荷载工况作用下的理论计算值,应力校验系数在0.88~0。97之间,22m跨最大正弯矩控制截面实测箱梁钢板应力平均值也低于该荷载工况作用下的理论计算值,应力校验系数0。87~0。98之间,2#墩顶控制截面由于腹板根部高度位于中性轴附近故腹板上缘应力理论计算数值较小。在全桥满载最大负弯矩加载工况下,实测箱梁翼缘及底板应力平均值也均低于该荷载工况作用下的理论计算值,翼缘应力校验系数0.94~0。97之间,底板应力校验系数0.89~0。97之间。箱梁结构强度符合设计及相关规范要求。在最大试验荷载加载作用下,25m跨最大正弯矩控制截面箱梁各测点实测挠度值均低于该荷载工况作用下的理论计算值,校验系数在0.92—0.93之间,22m跨最大正弯矩控制截面箱梁各测点实测挠度值也低于该荷载工况作用下的理论计算值,校验系数在0。93—0。94之间。最大相对残余变形为11。63%,小于20%。结构刚度符合设计及相关规范要求。在所施加最大试验荷载作用下,未发现钢箱梁产生异响

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论