高考真题与模拟训练专题练习专题02函数及其性质(原卷版+解析)_第1页
高考真题与模拟训练专题练习专题02函数及其性质(原卷版+解析)_第2页
高考真题与模拟训练专题练习专题02函数及其性质(原卷版+解析)_第3页
高考真题与模拟训练专题练习专题02函数及其性质(原卷版+解析)_第4页
高考真题与模拟训练专题练习专题02函数及其性质(原卷版+解析)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题2函数及其性质第一部分真题分类一、单选题1.(2021·浙江高考真题)已知函数,则图象为如图的函数可能是()A. B.C. D.2.(2021·全国高考真题(文))下列函数中是增函数的为()A. B. C. D.3.(2021·全国高考真题(文))设是定义域为R的奇函数,且.若,则()A. B. C. D.4.(2021·全国高考真题(理))设函数的定义域为R,为奇函数,为偶函数,当时,.若,则()A. B. C. D.5.(2021·全国高考真题(理))设函数,则下列函数中为奇函数的是()A. B. C. D.6.(2020·天津高考真题)函数的图象大致为()A. B.C. D.7.(2020·北京高考真题)已知函数,则不等式的解集是()A. B.C. D.8.(2020·海南高考真题)若定义在的奇函数f(x)在单调递减,且f(2)=0,则满足的x的取值范围是()A. B.C. D.9.(2020·全国高考真题(理))设函数,则f(x)()A.是偶函数,且在单调递增 B.是奇函数,且在单调递减C.是偶函数,且在单调递增 D.是奇函数,且在单调递减二、填空题10.(2021·浙江高考真题)已知,函数若,则___________.11.(2021·全国高考真题)已知函数是偶函数,则______.12.(2020·北京高考真题)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W与时间t的关系为,用的大小评价在这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在这段时间内,甲企业的污水治理能力比乙企业强;②在时刻,甲企业的污水治理能力比乙企业强;③在时刻,甲、乙两企业的污水排放都已达标;④甲企业在这三段时间中,在的污水治理能力最强.其中所有正确结论的序号是____________________.13.(2020·全国高考真题(理))关于函数f(x)=有如下四个命题:①f(x)的图象关于y轴对称.②f(x)的图象关于原点对称.③f(x)的图象关于直线x=对称.④f(x)的最小值为2.其中所有真命题的序号是__________.14.设是定义在上的两个周期函数,的周期为4,的周期为2,且是奇函数.当时,,,其中.若在区间上,关于的方程有8个不同的实数根,则的取值范围是_____.三、解答题15.(2021·全国高考真题(文))已知函数.(1)画出和的图像;(2)若,求a的取值范围.16.设函数.(1)画出的图像;(2)当,,求的最小值.第二部分模拟训练一、单选题1.设函数,的定义域为R,且是奇函数,是偶函数,则下列结论中正确的是()A.是偶函数 B.是奇函数C.是奇函数 D.是奇函数2.函数的图象大致为()A.B.C.D.3.已知二次函数,定义,,其中表示中的较大者,表示中的较小者,下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则4.若函数,,对于给定的非零实数,总存在非零常数,使得定义域内的任意实数,都有恒成立,此时为的类周期,函数是上的级类周期函数.若函数是定义在区间内的2级类周期函数,且,当时,函数.若,,使成立,则实数的取值范围是()A. B. C. D.5.已知函数满足:①对任意、且,都有;②对定义域内的任意,都有,则符合上述条件的函数是()A.B. C. D.6.已知函数,若存在,使得关于的函数有三个不同的零点,则实数的取值范围是()A. B. C. D.二、填空题7.定义在上的函数满足,且当若任意的,不等式恒成立,则实数的最大值是____________8.已知定义在上的偶函数,满足,当时,,则__________.9.定义在上的函数满足且,又当且时,有.若对所有,恒成立,则实数的取值范围是__________.二、解答题10.已知函数.(1)若,恒成立,求实数的取值范围;(2)求函数的图像与直线围成的封闭图形的面积.专题2函数及其性质第一部分真题分类一、单选题1.(2021·浙江高考真题)已知函数,则图象为如图的函数可能是()A. B.C. D.【答案】D【解析】对于A,,该函数为非奇非偶函数,与函数图象不符,排除A;对于B,,该函数为非奇非偶函数,与函数图象不符,排除B;对于C,,则,当时,,与图象不符,排除C.故选:D.2.(2021·全国高考真题(文))下列函数中是增函数的为()A. B. C. D.【答案】D【解析】对于A,为上的减函数,不合题意,舍.对于B,为上的减函数,不合题意,舍.对于C,在为减函数,不合题意,舍.对于D,为上的增函数,符合题意,故选:D.3.(2021·全国高考真题(文))设是定义域为R的奇函数,且.若,则()A. B. C. D.【答案】C【解析】由题意可得:,而,故.故选:C.4.(2021·全国高考真题(理))设函数的定义域为R,为奇函数,为偶函数,当时,.若,则()A. B. C. D.【答案】D【解析】因为是奇函数,所以①;因为是偶函数,所以②.令,由①得:,由②得:,因为,所以,令,由①得:,所以.思路一:从定义入手.所以.思路二:从周期性入手由两个对称性可知,函数的周期.所以.故选:D.5.(2021·全国高考真题(理))设函数,则下列函数中为奇函数的是()A. B. C. D.【答案】B【解析】由题意可得,对于A,不是奇函数;对于B,是奇函数;对于C,,定义域不关于原点对称,不是奇函数;对于D,,定义域不关于原点对称,不是奇函数.故选:B6.(2020·天津高考真题)函数的图象大致为()A. B.C. D.【答案】A【解析】由函数的解析式可得:,则函数为奇函数,其图象关于坐标原点对称,选项CD错误;当时,,选项B错误.故选:A.7.(2020·北京高考真题)已知函数,则不等式的解集是()A. B.C. D.【答案】D【解析】因为,所以等价于,在同一直角坐标系中作出和的图象如图:两函数图象的交点坐标为,不等式的解为或.所以不等式的解集为:.故选:D.8.(2020·海南高考真题)若定义在的奇函数f(x)在单调递减,且f(2)=0,则满足的x的取值范围是()A. B.C. D.【答案】D【解析】因为定义在上的奇函数在上单调递减,且,所以在上也是单调递减,且,,所以当时,,当时,,所以由可得:或或解得或,所以满足的的取值范围是,故选:D.9.(2020·全国高考真题(理))设函数,则f(x)()A.是偶函数,且在单调递增 B.是奇函数,且在单调递减C.是偶函数,且在单调递增 D.是奇函数,且在单调递减【答案】D【解析】由得定义域为,关于坐标原点对称,又,为定义域上的奇函数,可排除AC;当时,,在上单调递增,在上单调递减,在上单调递增,排除B;当时,,在上单调递减,在定义域内单调递增,根据复合函数单调性可知:在上单调递减,D正确.故选:D.二、填空题10.(2021·浙江高考真题)已知,函数若,则___________.【答案】2【解析】,故,故答案为:2.11.(2021·全国高考真题)已知函数是偶函数,则______.【答案】1【解析】因为,故,因为为偶函数,故,时,整理得到,故,故答案为:112.(2020·北京高考真题)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W与时间t的关系为,用的大小评价在这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在这段时间内,甲企业的污水治理能力比乙企业强;②在时刻,甲企业的污水治理能力比乙企业强;③在时刻,甲、乙两企业的污水排放都已达标;④甲企业在这三段时间中,在的污水治理能力最强.其中所有正确结论的序号是____________________.【答案】①②③【解析】表示区间端点连线斜率的负数,在这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在这三段时间中,甲企业在这段时间内,甲的斜率最小,其相反数最大,即在的污水治理能力最强.④错误;在时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;故答案为:①②③13.(2020·全国高考真题(理))关于函数f(x)=有如下四个命题:①f(x)的图象关于y轴对称.②f(x)的图象关于原点对称.③f(x)的图象关于直线x=对称.④f(x)的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】对于命题①,,,则,所以,函数的图象不关于轴对称,命题①错误;对于命题②,函数的定义域为,定义域关于原点对称,,所以,函数的图象关于原点对称,命题②正确;对于命题③,,,则,所以,函数的图象关于直线对称,命题③正确;对于命题④,当时,,则,命题④错误.故答案为:②③.14.设是定义在上的两个周期函数,的周期为4,的周期为2,且是奇函数.当时,,,其中.若在区间上,关于的方程有8个不同的实数根,则的取值范围是_____.【答案】.【解析】当时,即又为奇函数,其图象关于原点对称,其周期为,如图,函数与的图象,要使在上有个实根,只需二者图象有个交点即可.当时,函数与的图象有个交点;当时,的图象为恒过点的直线,只需函数与的图象有个交点.当与图象相切时,圆心到直线的距离为,即,得,函数与的图象有个交点;当过点时,函数与的图象有个交点,此时,得.综上可知,满足在上有个实根的的取值范围为.三、解答题15.(2021·全国高考真题(文))已知函数.(1)画出和的图像;(2)若,求a的取值范围.【答案】(1)图像见解析;(2)【解析】(1)可得,画出图像如下:,画出函数图像如下:(2),如图,在同一个坐标系里画出图像,是平移了个单位得到,则要使,需将向左平移,即,当过时,,解得或(舍去),则数形结合可得需至少将向左平移个单位,.16.设函数.(1)画出的图像;(2)当,,求的最小值.【答案】(1)见解析(2)【解析】(1)的图像如图所示.(2)由(1)知,的图像与轴交点的纵坐标为,且各部分所在直线斜率的最大值为,故当且仅当且时,在成立,因此的最小值为.第二部分模拟训练一、单选题1.设函数,的定义域为R,且是奇函数,是偶函数,则下列结论中正确的是()A.是偶函数 B.是奇函数C.是奇函数 D.是奇函数【答案】C【解析】是奇函数,是偶函数,,对于A,,故是奇函数,故A错误;对于B,,故是偶函数,故B错误;对于C,,故是奇函数,故C正确;对于D,,故是偶函数,故D错误.故选:C.2.函数的图象大致为()A.B.C.D.【答案】B【解析】因为当时,当时,所以,故排除AC;当时,,故排除D;故选:B3.已知二次函数,定义,,其中表示中的较大者,表示中的较小者,下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则【答案】C【解析】由于,故二次函数的对称轴.,,若此时对称轴为,则有,即,所以选项不正确,,,在对称轴的位置取得最小值,即对称轴为,所以,故选项不正确,,,也即是函数在区间上的最小值,故,所以选.4.若函数,,对于给定的非零实数,总存在非零常数,使得定义域内的任意实数,都有恒成立,此时为的类周期,函数是上的级类周期函数.若函数是定义在区间内的2级类周期函数,且,当时,函数.若,,使成立,则实数的取值范围是()A. B. C. D.【答案】B【解析】根据题意,对于函数f(x),当x∈[0,2)时,分析可得:当0≤x≤1时,f(x)=﹣2x2,有最大值f(0)=,最小值f(1)=﹣,当1<x<2时,f(x)=f(2﹣x),函数f(x)的图象关于直线x=1对称,则此时有﹣<f(x)<,又由函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2;则在∈[6,8)上,f(x)=23•f(x﹣6),则有﹣12≤f(x)≤4,则f(8)=2f(6)=4f(4)=8f(2)=16f(0)=8,则函数f(x)在区间[6,8]上的最大值为8,最小值为﹣12;对于函数,有g′(x)=﹣+x+1=,分析可得:在(0,1)上,g′(x)<0,函数g(x)为减函数,在(1,+∞)上,g′(x)>0,函数g(x)为增函数,则函数g(x)在(0,+∞)上,由最小值f(1)=+m,若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,必有g(x)min≤f(x)max,即+m≤8,解可得m≤,即m的取值范围为(﹣∞,];故答案为:B5.已知函数满足:①对任意、且,都有;②对定义域内的任意,都有,则符合上述条件的函数是()A.B. C. D.【答案】A【解析】由题意得:是偶函数,在单调递增,对于,,是偶函数,且时,,对称轴为,故在递增,符合题意;对于,函数是奇函数,不合题意;对于,由,解得:,定义域不关于原点对称,故函数不是偶函数,不合题意;对于,函数在无单调性,不合题意;故选:A6.已知函数,若存在,使得关于的函数有三个不同的零点,则实数的取值范围是()A.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论