版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2025届江苏无锡市九年级数学第一学期开学复习检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,1.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数不变,方差不变 B.平均数不变,方差变大C.平均数不变,方差变小 D.平均数变小,方差不变2、(4分)下列计算错误的是()A.=2 B.=3 C.÷=3 D.=1﹣=3、(4分)式子有意义,则x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤14、(4分)点P(-2,3)关于y轴的对称点的坐标是()A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)5、(4分)如图,已知菱形OABC的两个顶点O(0,0),B(2,2),若将菱形绕点O以每秒45°的速度逆时针旋转,则第2019秒时,菱形两对角线交点D的横坐标为()A. B.- C.1 D.﹣16、(4分)如果关于的分式方程有非负整数解,且一次函数不经过四象限,则所有符合条件的的和是().A.0 B.2 C.3 D.57、(4分)反比例函数y=-6xA.第一、二象限 B.第三、四象限C.第一、三象限 D.第二、四象限8、(4分)下列计算中,正确的是().A. B.C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知:如图,△ABC中,∠ACB=90°,AB=5cm,AC=4cm,CD⊥AB于D,求CD的长及三角形的面积.10、(4分)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当C点落在直线y=2x-6上时,线段BC扫过的区域面积为________.11、(4分)如图,在平面直角坐标系中,OAB是边长为4的等边三角形,OD是AB边上的高,点P是OD上的一个动点,若点C的坐标是,则PA+PC的最小值是_________________.12、(4分)一个矩形的长比宽多1cm,面积是132cm2,则矩形的长为________cm.13、(4分)一元二次方程化成一般式为________.三、解答题(本大题共5个小题,共48分)14、(12分)某校初二年级以班为单位进行篮球比赛,第一轮比赛是先把全年级平分成、两个大组,同一个大组的每两个班都进行一场比赛,这样第一轮、两个大组共进行了20场比赛,问该校初二年级共有几个班?15、(8分)近年来,随着我国科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国创造”,高铁事业是“中国创造”的典范,甲、乙两个城市的火车站相距1280千米,加开高铁后,从甲站到乙站的运行时间缩短了11个小时,大大方便了人们出行,已知高铁行驶速度是原来火车速度的3.2倍,求高铁的行驶速度.16、(8分)某校八年级甲,乙两班各有名学生,为了解这两个班学生身体素质情况,进行了抽样调查.从这两个班各随机抽取名学生进行身体素质测试,测试成绩如下:甲班乙班整理上面数据,得到如下统计表:样本数据的平均数、众数.中位数如下表所示:根据以上信息,解答下列问题:(1)求表中的值(2)表中的值为()(3)若规定测试成绩在分以上(含分)的学生身体素质为优秀,请估计乙班名学生中身体素质为优秀的学生的人数.17、(10分)(1)计算:(2)解方程:-1=18、(10分)如图,在四边形中,,,,,,点从点出发,以每秒单位的速度向点运动,点从点同时出发,以每秒单位的速度向点运动,其中一个动点到达终点时,另一个动点也随之停止运动,设运动时间为秒.(1)当时,若以点,和点,,,中的两个点为顶点的四边形为平行四边形,且线段为平行四边形的一边,求的值.(2)若以点,和点,,,中的两个点为顶点的四边形为菱形,且线段为菱形的一条对角线,请直接写出的值.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知一次函数图像不经过第一象限,求m的取值范围是__________.20、(4分)如图,在中,,,,为上一点,,将绕点旋转至,连接,分别为的中点,则的最大值为_________.21、(4分)在平行四边形ABCD中,O是对角线AC、BD的交点,AC⊥BC,且AB=10㎝,AD=6㎝,则OB=_______________.22、(4分)如图,的中位线,把沿折叠,使点落在边上的点处,若、两点之间的距离是,则的面积为______;23、(4分)若以二元一次方程的解为坐标的点(x,y)都在直线上,则常数b=_______.二、解答题(本大题共3个小题,共30分)24、(8分)已知,两地相距km,甲、乙两人沿同一公路从地出发到地,甲骑摩托车,乙骑电动车,图中直线,分别表示甲、乙离开地的路程(km)与时问(h)的函数关系的图象.根据图象解答下列问题.(1)甲比乙晚出发几个小时?乙的速度是多少?(2)乙到达终点地用了多长时间?(3)在乙出发后几小时,两人相遇?25、(10分)如图,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求菱形ABCD的面积.26、(12分)某校为了了解八年级学生的身体素质情况,该校体育老师从八年级学生中随机抽取了50名进行一分钟跳绳次数测试,以测试数据为样本,绘制了如下的统计图表:组别次数频数(人数)第1组6第2组8第3组第4组18第5组6请结合图表完成下列问题:(1)表中的______;(2)请把频数分布直方图补充完整;(3)所抽取的50名学生跳绳成绩的中位数落在哪一组?(4)该校八年级学生共有500人,若规定一分钟跳绳次数()在时为达标,请估计该校八年级学生一分钟跳绳有多少人达标?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】解:=(160+165+170+163+1)÷5=165,S2原=,=(160+165+170+163+1+165)÷6=165,S2新=,平均数不变,方差变小,故选C.2、D【解析】分析:根据二次根式的化简及计算法则即可得出答案.详解:A、=2,正确;B、=3,正确;C、÷=3,正确;D、,错误;故选D.点睛:本题主要考查的是二次根式的计算法则,属于基础题型.明确计算法则是解决这个问题的关键.3、C【解析】
试题分析:由二次根式的概念可知被开方数为非负数,由此有x-1≥0,所以x≥1,C正确考点:二次根式有意义的条件4、A【解析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点P(−2,3)关于y轴的对称点的坐标为(2,3).故选:A.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5、B【解析】
根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标.【详解】解:菱形OABC的顶点O(0,0),B(2,2),得D点坐标为,即(1,1).∴OD=每秒旋转45°,则第2019秒时,得45°×2019,45°×2019÷360=252.375周,OD旋转了252又周,菱形的对角线交点D的坐标为(﹣,0),故选:B.考查菱形的性质及旋转的性质,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键.6、B【解析】
依据关于x的一次函数y=x+m+2不经过第四象限,求得m的取值范围,依据关于x的分式方程有非负整数解,即可得到整数m的取值,即可得到满足条件的m的和.【详解】∵一次函数y=x+m+2不经过第四象限,
∴m+2≥0,
∴m≥-2,
∵关于x的分式方程=2有非负整数解
∴x=3-m为非负整数且3-m≠2,
又∵m≥-2,
∴m=-2,-1,0,2,3,
∴所有符合条件的m的和是2,
故选:B.考查了一次函数的图象与性质以及分式方程的解.注意根据题意求得满足条件的m的值是关键.7、D【解析】
根据反比例函数的比例系数来判断图象所在的象限,k>0,位于一、三象限;k<0,位于二、四象限.【详解】∵y=-6x∴函数图象过二、四象限.故选D.本题考查反比例函数的图象和性质:当k>0,位于一、三象限;k<0,位于二、四象限,比较简单,容易掌握.8、B【解析】
根据二次根式的计算法则进行计算即可得出答案.【详解】解:A、,计算错误;B、计算正确;C、,计算错误;D、,计算正确;故选B.点睛:本题主要考查的是二次根式的计算法则,属于基础题型.明确计算法则是解决这个问题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、S△ABC=6cm2,CD=cm.【解析】
利用勾股定理求得BC=3cm,根据直角三角形的面积等于两直角边乘积的一半即可求得△ABC的面积,再利用直角三角形的面积等于斜边乘以斜边上高的一半可得AB•CD=6,由此即可求得CD的长.【详解】∵∠ACB=90°,AB=5cm,AC=4cm,∴BC==3cm,则S△ABC=×AC×BC=×4×3=6(cm2).根据三角形的面积公式得:AB•CD=6,即×5×CD=6,∴CD=cm.本题考查了勾股定理、直角三角形面积的两种表示法,根据勾股定理求得BC=3cm是解决问题的关键.10、5【解析】解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=1.∵∠CAB=90°,BC=3,∴AC=4,∴A′C′=4.∵点C′在直线y=4x﹣6上,∴4x﹣6=4,解得x=3.即OA′=3,∴CC′=3﹣1=4,∴S▱BCC′B′=4×4=5(cm4).即线段BC扫过的面积为5cm4.故答案为5.11、【解析】
由题意知,点A与点B关于直线OD对称,连接BC,则BC的长即为PC+AP的最小值,过点B作BN⊥y轴,垂足为N,过B作BM⊥x轴于M,求出BN、CN的长,然后利用勾股定理进行求解即可.【详解】由题意知,点A与点B关于直线OD对称,连接BC,则BC的长即为PC+AP的最小值,过点B作BN⊥y轴,垂足为N,过B作BM⊥x轴于M,则四边形OMBN是矩形,∵△ABO是等边三角形,∴OM=AO=×4=2,∴BN=OM=2,在Rt△OBM中,BM===2,∴ON=BM=2,∵C,∴CN=ON+OC=2+=3,在Rt△BNC中,BC=,即PC+AP的最小值为,故答案为.本题考查了轴对称的性质,最短路径问题,勾股定理,等边三角形的性质等,正确添加辅助线,确定出最小值是解题的关键.12、1【解析】
设矩形的宽为xcm,根据矩形的面积=长×宽列出方程解答即可.【详解】设矩形的宽为xcm,依题意得:x(x+1)=132,整理,得(x+1)(x-11)=0,解得x1=-1(舍去),x2=11,则x+1=1.即矩形的长是1cm.故答案为:1.本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.13、【解析】
直接去括号,然后移项,即可得到答案.【详解】解:∵,∴,∴,故答案为:.本题考查了一元二次方程的一般式,解题的关键是熟练掌握一元二次方程的一般式.三、解答题(本大题共5个小题,共48分)14、10个【解析】
设全年级共有2n个班级,则每一大组有n个班,每个班需参加(n-1)场比赛,则共有n(n-1)×场比赛,可以列出一个一元二次方程.【详解】解:设全年级个班,由题意得:,解得或(舍),,答:全年级一共10个班.本题主要考查了有实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.15、高铁的行驶速度为1千米/时.【解析】
设原来火车的速度为x千米/时,则高铁的速度为3.2x千米/时,根据时间=路程÷速度结合高铁比原来的火车省11小时,即可得出关于x的分式方程,解之即可得出结论.【详解】设原来火车的速度为x千米/时,则高铁的速度为3.2x千米/时,根据题意得:,解得:x=80,经检验,x=80是原分式方程的解,∴3.2x=3.2×80=1.答:高铁的行驶速度为1千米/时.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.16、(1)72;(2)70;(3)20.【解析】
(1)利用平均数的公式,可以求出平均数m;(2)由众数的概念可得乙班的众数n的值是70;(3)用总人数乘以后两组数的频率之和即可得出答案.【详解】(1)的值为.(2)整理乙班数据可知70出现的次数最多,为三次,则乙班的众数n=(3)(人)答:乙班名学生中身体素质为优秀的学生约为人.此题考查了频率分布直方图、频率分布表、平均数、众数,关键是读懂频数分布直方图和统计表,能获取有关信息,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.17、(1)3+2;(2)原方程无解【解析】
(1)利用乘法公式展开,然后合并即可;(2)先去分母把方程化为(x-2)2-(x+2)(x-2)=16,然后解整式方程后进行检验确定原方程的解.【详解】解:(1)原式=5+5-3-2=3+2;(2)去分母得(x-2)2-(x+2)(x-2)=16,解得x=-2,检验:当x=-2时,(x+2)(x-2)=0,则x=-2为原方程的增根,所以原方程无解.本题考查了二次根式的混合运算及分式方程的解法:先进行二次根式的乘法运算,再合并同类二次根式即可.解分式方程最关键的是把分式方程化为整式方程.18、(1)当t=或4时,线段为平行四边形的一边;(2)v的值是2或1【解析】
(1)由线段为平行四边形的一边分两种情况,利用平行四边形的性质对边相等建立方程求解即可得到结论;(2)由线段为菱形的一条对角线,用菱形的性质建立方程求解即可求出速度.【详解】(1)由线段为平行四边形的一边,分两种情况:①当P、Q两点与A、B两点构成的四边形是平行四边形时,∵AP∥BQ,∴当AP=BQ时,四边形APQB是平行四边形,此时t=22-3t,解得t=;②当P、Q两点与C、D两点构成的四边形是平行四边形时,∵PD∥QC,∴当PD=QC时,四边形PQCD是平行四边形,此时16-t=3t,解得t=4;综上,当t=或4时,线段为平行四边形的一边;(2)在Rt△ABP中,,AP=t∴,当PD=BQ=BP时,四边形PBQD是菱形,∴,解得∴当t=6,点Q的速度是每秒2个单位时四边形PBQD是菱形;在Rt△ABQ中,,BQ=22-vt,∴,当AP=AQ=CQ时,四边形AQPC是菱形,∴,解得,∴当t=,点Q的速度是每秒1个单位时四边形AQPC是菱形,综上,v的值是2或1.此题考查图形与动点问题,平行四边形的性质,菱形的性质,勾股定理,正确理解图形的形状及性质是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、1<m≤2【解析】【分析】一次函数图像不经过第一象限,则一次函数与y轴的交点在y轴的负半轴或原点.【详解】∵图象不经过第一象限,即:一次函数与y轴的交点在y轴的负半轴或原点,∴1-m<0,m-2≤0∴m的取值范围为:1<m≤2故答案为:1<m≤2【点睛】本题考核知识点:一次函数的图象.解题关键点:理解一次函数的性质.20、+2【解析】
利用直角三角形斜边上的中线等于斜边的一半,可得CM的长,利用三角形中位线定理,可得MF的长,再根据当且仅当M、F、C三点共线且M在线段CF上时CF最大,即可得到结论.【详解】解:如图,取AB的中点M,连接MF和CM,
∵将线段AD绕点A旋转至AD′,
∴AD′=AD=1,
∵∠ACB=90°,
∵AC=6,BC=2,
∴AB=.
∵M为AB中点,
∴CM=,
∵AD′=1.
∵M为AB中点,F为BD′中点,
∴FM=AD′=2.
∵CM+FM≥CF,
∴当且仅当M、F、C三点共线且M在线段CF上时,CF最大,
此时CF=CM+FM=+2.
故答案为:+2.此题考查旋转的性质,解题的关键是掌握旋转的性质及直角三角形斜边上的中线等于斜边的一半,知道当且仅当M、F、C三点共线且M在线段CF上时CF最大是解题的关键.21、4cm【解析】
在▱ABCD中∵BC=AD=6cm,AO=CO,∵AC⊥BC,∴∠ACB=90°,∴AC==8cm,∴AO=AC=4cm;故答案为4cm.22、40.【解析】
根据对称轴垂直平分对应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积.【详解】解:如图,连接AF,∵DE为△ABC的中位线,∴DE//BC,BC=2DE=10cm.由折叠的性质可得:,∴,∴.故答案是40.本题考查翻折变换(折叠问题),三角形中位线定理.在三角形底已知的情况下要求三角形的面积,只需要求出它的高即可,本题解题关键是连接AF,证明AF为△ABC的高.23、1.【解析】
直线解析式乘以1后和方程联立解答即可.【详解】因为以二元一次方程x+1y-b=0的解为坐标的点(x,y)都在直线上,直线解析式乘以1得1y=-x+1b-1,变形为:x+1y-1b+1=0所以-b=-1b+1,解得:b=1,故答案为1.此题考查一次函数与二元一次方程问题,关键是直线解析式乘以1后和方程联立解答.二、解答题(本大题共3个小题,共30分)24、(1)甲比乙晚出发1个小时,乙的速度是20km/h;(2)乙到达终点B地用时4个小时;(3)在乙出发后2小时,两人相遇.【解析】
(1)观察函数图象即可得出甲比乙晚出发1个小时,再根据“速度=路程÷时间”即可算出乙的速度;
(2)由乙的速度即可得出直线OC的解析式,令y=80,求出x值即可得出结论;
(3)根据点D、E的坐标利用待定系数法即可求出直线DE的解析式,联立直线OC、D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电子图书阅读器市场需求与消费特点分析
- 卫生消毒剂市场发展现状调查及供需格局分析预测报告
- 油画布产业运行及前景预测报告
- 火灾扑打器市场发展现状调查及供需格局分析预测报告
- 玩具车轨道产品入市调查研究报告
- 小学禁毒教育课件
- 汽车用脚垫产业规划专项研究报告
- 水上自行车产品入市调查研究报告
- 电视机天线产业运行及前景预测报告
- 皮肤病用凝胶市场发展预测和趋势分析
- 文明交通你我同行(课件)-小学生主题班会通用版
- 告别假努力学会真自律
- 《婴幼儿行为观察、记录与评价》期末试卷及答案 卷3
- 高一政治学科期末考试质量分析报告(7篇)
- 《冯谖客孟尝君》
- 共享菜地商业计划书
- 小学期中表彰大会活动方案
- 印刷品服务投标方案(技术标)(宣传印刷品、业务资料等)
- 《第2课:20世纪的艺术大师-马蒂斯》教学设计(湖北省县级优课)-五年级美术教案
- 解一元一次方程去分母 全市一等奖
- 阀门检验试验方案
评论
0/150
提交评论