版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2025届江苏省淮安市八校联考九上数学开学教学质量检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列运算中正确的是()A.+= B.C. D.2、(4分)已知菱形的边长和一条对角线的长均为2cm,则菱形的面积为()A.3cm2 B.4cm2 C.3cm2 D.23cm23、(4分)下列等式从左边到右边的变形,是因式分解的是()A.(3﹣a)(3+a)=9﹣a2 B.x2﹣y2+1=(x+y)(x﹣y)+1C.a2+1=a(a+) D.m2﹣2mn+n2=(m﹣n)24、(4分)如果,那么下列各式一定不成立的是()A. B. C. D.5、(4分)如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,AB=6cm,BC=8cm,则△AEF的周长是()A.14cm B.8cm C.9cm D.10cm6、(4分)某商品经过连续两次降价,销售单价由原来的125元降到80元,则两次降价的平均百分率为()A.10% B.15% C.20% D.25%7、(4分)从下面四个条件中任意选两个,能使四边形ABCD是平行四边形选法有()①;②;③;④A.2种 B.3种 C.4种 D.5种8、(4分)如图,在▱ABCD中,AB=3,AD=5,∠BCD的平分线交BA的延长线于点E,则AE的长为()A.3 B.2.5 C.2 D.1.5二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)关于一元二次方程有两个相等的实数根,则的值是__________.10、(4分)如图,在矩形纸片ABCD中,AB=6cm,BC=8cm,将矩形纸片折叠,使点B与点D重合,那么△DCF的周长是___cm.11、(4分)如图,将长8cm,宽4cm的矩形ABCD纸片折叠,使点A与C重合,则折痕EF的长为_________cm.12、(4分)“校安工程”关乎生命、关乎未来目前我省正在强力推进这重大民生工程.2018年,我市在省财政补助的基础上投人万元的配套资金用于“校安工程”,计划以后每年以相同的增长率投人配套资金,2020年我市计划投人“校安工程”配套资金万元从2018年到2020年,我市三年共投入“校安工程”配套资金__________万元.13、(4分)函数与的图象如图所示,则的值为____.三、解答题(本大题共5个小题,共48分)14、(12分)对于任意三个实数a,b,c,用min|a,b,c|表示这三个实数中最小数,例如:min|-2,0,1|=-2,则:(1)填空,min|(-2019)0,(-)-2,-|=______,如果min|3,5-x,3x+6|=3,则x的取值范围为______;(2)化简:÷(x+2+)并在(1)中x的取值范围内选取一个合适的整数代入求值.15、(8分)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题(1)画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1,并写出点C1的坐标;(2)画出将△ABC关于原点O对称的图形△A2B2C2,并写出点C2的坐标.16、(8分)如图,在△ABD中,AB=AD,将△ABD沿BD对折,使点A翻折到点C,E是BD上一点。且BE>DE,连接AE并延长交CD于F,连接CE.(1)依题意补全图形;(2)判断∠AFD与∠BCE的大小关系并加以证明;(3)若∠BAD=120°,过点A作∠FAG=60°交边BC于点G,若BG=m,DF=n,求AB的长度(用含m,n的代数式表示).17、(10分)如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?(3)经过多长时间,当PQ不平行于CD时,有PQ=CD.18、(10分)如图,▱ABCD中,AC为对角线,G为CD的中点,连接AG并廷长交BC的延长线于点F,连接DF,求证:四边形ACFD为平行四边形.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)某公司测试自动驾驶技术,发现移动中汽车“”通信中每个数据包传输的测量精度大约为0.0000018秒,请将数据0.0000018用科学计数法表示为__________.20、(4分)已知一组数据﹣3、3,﹣2、1、3、0、4、x的平均数是1,则众数是_____.21、(4分)如图,直线y=mx与双曲线y=交于A、B两点,D为x轴上一点,连接BD交y轴与点C,若C(0,-2)恰好为BD中点,且△ABD的面积为6,则B点坐标为__________.22、(4分)有甲、乙两张纸条,甲纸条的宽度是乙纸条宽的2倍,如图,将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD.则AB与BC的数量关系为.23、(4分)某校对1200名学生的身高进行了测量,身高在1.58~1.63(单位:)这一个小组的频率为0.25,则该组的人数是________.二、解答题(本大题共3个小题,共30分)24、(8分)解方程:=-.25、(10分)将矩形ABCD绕点B顺时针旋转得到矩形A1BC1D1,点A、C、D的对应点分别为A1、C1、D1(1)当点A1落在AC上时①如图1,若∠CAB=60°,求证:四边形ABD1C为平行四边形;②如图2,AD1交CB于点O.若∠CAB≠60°,求证:DO=AO;(2)如图3,当A1D1过点C时.若BC=5,CD=3,直接写出A1A的长.26、(12分)折叠矩形ABCD,使点D落在BC边上的点F处.(1)求证:△ABF∽△FCE;(2)若DC=8,CF=4,求矩形ABCD的面积S.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】
根据二次根式的加法、混合运算以及二次根式的化简等知识逐一进行分析即可得.【详解】A.+=2+3=5,故A选项错误;B.=2,故B选项错误;C.,故C选项错误;D.,正确,故选D.本题考查了二次根式的混合运算以及二次根式的化简等知识,熟练掌握各运算的运算法则是解题的关键.2、D【解析】
由四边形ABCD是菱形,可得菱形的四条边都相等AB=BC=CD=AD,菱形的对角线互相平分且相等即AC⊥BD,OA=OC,OB=OD,又因为菱形的边长和一条对角线的长均为2,易求得OB=1,则可得AC的值,根据菱形的面积等于积的一半,即可求得菱形的面积.【详解】解:根据题意画出图形,如图所示:
∵四边形ABCD是菱形,
∴AB=BC=CD=AD=2cm,AC⊥BD,OA=OC,OB=OD,
又∵菱形的边长和一条对角线的长均为2,
∴AB=AD=BD=2,
∴OB=1,
∴OA=AB2-BO2=3,
∴AC=23,
∴菱形的面积为2本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半.3、D【解析】
利用把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出答案.【详解】A、(3﹣a)(3+a)=9﹣a2,是整式的乘法运算,故此选项错误;B、x2﹣y2+1=(x+y)(x﹣y)+1,不符合因式分解的定义,故此选项错误;C、a2+1=a(a+),不符合因式分解的定义,故此选项错误;D、m2﹣2mn+n2=(m﹣n)2,正确.故选:D.此题主要考查了因式分解的意义,正确把握定义是解题关键.4、C【解析】
根据不等式的性质,可得答案.【详解】、两边都减,不等号的方向不变,正确,不符合选项;、因为,所以,正确,不符合选项;、因为,所以,错误,符合选项;、因为,所以(),正确,不符合选项.故选:.本题考查了不等式的性质的应用,不等式的两边都加上或减去同一个数,不等号的方向不变;不等式的两边都乘以或除以同一个负数,不等号的方向要改变.5、C【解析】
利用勾股定理列式求出AC,再根据矩形的对角线互相平分且相等求出OA=OD=AC,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得EF=OD,再求出AF,AE,然后根据三角形的周长公式列式计算即可得解.【详解】由勾股定理得,AC==10cm∵四边形ABCD是矩形∴OA=OD=AC=×10=5cm∵点E、F分别是AO、AD的中点∴EF=OD=cmAF=×8=4cmAE=OA=cm∴△AEF的周长=+4+=9cm.故选C.本题考查了三角形的中位线平行于第三边并且等于第三边的一半,矩形的性质,勾股定理,熟记定理与性质是解题的关键.6、C【解析】
根据商品的原来的价格(1-每次降价的百分数)2=现在的价格,设出未知数,列方程求解即可.【详解】解:设这种商品平均每次降价的百分率为x根据题意列方程得:解得(舍)故选C.本题主要考查一元二次方程的应用,关键在于根据题意列方程.7、C【解析】
根据平行四边形的五种判定方法,灵活运用平行四边形的判定定理,可作出判断.【详解】解:①和③根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;
①和②,③和④根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;
②和④根据两组对边分别相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;
所以能推出四边形ABCD为平行四边形的有四组故选C.本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.8、C【解析】
由平行四边形ABCD中,CE平分∠BCD,可证得△BCE是等腰三角形,继而利用AE=BE-AB,求得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠E=∠ECD,∵CE平分∠BCD,∴∠BCE=∠ECD,∴∠E=∠BCE,∴BE=BC=5,∴AE=BE-AB=5-3=2.故选C.此题考查了平行四边形的性质以及等腰三角形的判定与性质.能证得△BCE是等腰三角形是解此题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、16【解析】
根据根判别式得出答案.【详解】因为关于一元二次方程有两个相等的实数根,所以解得k=16故答案为:16考核知识点:根判别式.理解根判别式的意义是关键.10、1.【解析】
根据翻转变换的性质得到BF=DF,根据三角形的周长公式计算即可.【详解】由翻转变换的性质可知,BF=DF,则△DCF的周长=DF+CF+CD=BF+CF+CD=BC+CD=1cm,故答案为:1.本题考查的是翻转变换的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11、【解析】
过点F作AB的垂线,垂足为H,设DF=X,则,C=4,FC=,,即DF=3,在直角三角形FHE中,12、【解析】
先设出年平均增长率,列出方程,解得年平均增长率,然后求出2019年的配套资金,将三年资金相加即可得到结果【详解】设配套资金的年平均增长率为x,则由题意可得,解之得x=0.4或x=-2.4(舍),故三年的共投入的资金为600+600×(1+0.4)+1176=2616(元),故填2616本题考查一元二次方程的应用,解题关键在于列出方程得到平均增长率,重点注意最后是要求三年的资金总和,不要看错题13、1【解析】
将x=1代入可得交点纵坐标的值,再将交点坐标代入y=kx可得k.【详解】解:把x=1代入得:y=1,∴与的交点坐标为(1,1),
把x=1,y=1代入y=kx得k=1.
故答案是:1.本题主要考查两条直线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式.三、解答题(本大题共5个小题,共48分)14、(1)-,-1≤x≤2;(2),x=0时,原式=1【解析】
(1)根据零指数幂的性质和负整数指数幂的性质化简,利用新定义列出不等式组,可以得到所求式子的值和x的取值范围;(2)根据分式的加法和除法可以化简题目中的式子,然后根据(1)中x的取值范围,选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】(1)∵(-2019)0=1,(-)-2=4,∴min|(-2019)0,(-)-2,-|=-,∵min|3,5-x,3x+6|=3,∴,得-1≤x≤2,故答案为:-,-1≤x≤2;(2)÷(x+2+)====,∵-1≤x≤2,且x≠-1,1,2,∴当x=0时,原式==1.本题考查分式的化简求值、零指数幂、负整数指数幂、解一元一次不等式组,解答本题的关键是明确它们各自的解答方法.15、(1)见解析,(﹣3,﹣1);(1)见解析,(﹣3,﹣1)【解析】
(1)利用点平移的坐标变换规律写出点A1、B1、C1的坐标,然后描点即可;(1)根据关于原点对称的点的坐标特征写点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1.【详解】解:(1)如图,△A1B1C1为所作,点C1的坐标为(﹣1,1);(1)如图,△A1B1C1为所作,点C1的坐标为(﹣3,﹣1).本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.16、(1)见解析;(2)∠BCE=∠AFD;(3)AB=m+n【解析】
(1)将△ABD沿BD对折,使点A翻折到点C,在BD上取一点E,BE>DE,连接AE并延长交CD于F,连接CE.据此画图即可;(2)先证出四边形ABCD是菱形,得∠BAF=∠AFD,再证出ΔABE≌ΔCBE,得到∠BCE=∠BAE.,所以∠BCE=∠AFD;(3)由已知得出ΔACD是等边三角形,所以AD=AC,再根据∠FAG=60°证出∠CAG=∠DAF,然后证明ΔACG≌ΔADF,得到CG=DF,从而得出AB=BC=m+n..【详解】(1)如图所示:;(2)∠BCE=∠AFD,理由:由题意可知:∠ABD=∠CBD,AB=BC=AD=CD∴四边形ABCD是菱形∴∠BAF=∠AFD在ΔABE和ΔCBE中∴ΔABE≌ΔCBE(SAS)∴∠BCE=∠BAE.∴∠BCE=∠AFD.(3)如图∵四边形ABCD是菱形,∠BAD=120°,∴∠CAD=∠CAB=60°∴ΔACD是等边三角形∴AD=AC∵∠GAC+∠FAC=60°,且∠FAC+∠DAF=60°∴∠CAG=∠DAF在ΔACG和ΔADF中,∴ΔACG≌ΔADF(ASA)∴CG=DF∵DF=n,BG=m∴CG=n∴BC=m+n∴AB=BC=m+n.本题考查了折叠问题,菱形的判定和性质以及全等三角形的判定和性质,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.17、(1)1s;(2)s;(3)3s.【解析】
(1)设经过ts时,四边形PQCD是平行四边形,根据DP=CQ,代入后求出即可;(2)设经过ts时,四边形PQBA是矩形,根据AP=BQ,代入后求出即可;(3)设经过t(s),四边形PQCD是等腰梯形,利用EP=2列出有关t的方程求解即可.【详解】(1)设经过t(s),四边形PQCD为平行四边形即PD=CQ所以24-t=3t,解得:t=1.(2)设经过t(s),四边形PQBA为矩形,即AP=BQ,所以t=21-3t,解得:t=.(3)设经过t(s),四边形PQCD是等腰梯形.过Q点作QE⊥AD,过D点作DF⊥BC,∴∠QEP=∠DFC=90°∵四边形PQCD是等腰梯形,∴PQ=DC.又∵AD∥BC,∠B=90°,∴AB=QE=DF.在Rt△EQP和Rt△FDC中,,∴Rt△EQP≌Rt△FDC(HL).∴FC=EP=BC-AD=21-24=2.又∵AE=BQ=21-3t,∴EP=AP-AE=t-(21-3t)=2.得:t=3.∴经过3s,PQ=CD.此题主要考查平行四边形、矩形及等腰梯形的判定掌握情况,本题解题关键是找出等量关系即可得解.18、见解析【解析】
根据平行四边形的性质证出∠ADC=∠FCD,然后再证明△ADG≌△FCG可得AD=FC,根据一组对边平行且相等的四边形是平行四边形可得结论;【详解】证明:∵在▱ABCD中,AD∥BF.∴∠ADC=∠FCD.∵G为CD的中点,∴DG=CG.在△ADG和△FCG中,,∴△ADG≌△FCG(ASA)∴AD=FC.又∵AD∥FC,∴四边形ACFD是平行四边形.此题主要考查了平行四边形的判定和性质、全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】.
故答案为:.本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.20、3【解析】∵-3、3,-2、1、3、0、4、x的平均数是1,∴-3+3-2+1+3+0+4+x=8∴x=2,∴一组数据-3、3,-2、1、3、0、4、2,∴众数是3.故答案是:3.21、(,-4)【解析】
设点B坐标为(a,b),由点C(0,-2)是BD中点可得b=-4,D(-a,0),根据反比例函数的对称性质可得A(-a,4),根据A、D两点坐标可得AD⊥x轴,根据△ABD的面积公式列方程可求出a值,即可得点B坐标.【详解】设点B坐标为(a,b),∵点C(0,-2)是BD中点,点D在x轴上,∴b=-4,D(-a,0),∵直线y=mx与双曲线y=交于A、B两点,∴A(-a,4),∴AD⊥x轴,AD=4,∵△ABD的面积为6,∴S△ABD=AD×2a=6∴a=,∴点B坐标为(,-4)本题考查反比例函数的性质,反比例函数图象是以原点为对称中心的双曲线,根据反比例函数的对称性表示出A点坐标是解题关键.22、AB=2BC.【解析】
过A作AE⊥BC于E、作AF⊥CD于F,∵甲纸条的宽度是乙纸条宽的2倍,∴AE=2AF,∵纸条的两边互相平行,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,AD=BC,∵∠AEB=∠AFD=90°,∴△ABE∽△ADF,∴,即.故答案为AB=2BC.考点:相似三角形的判定与性质.点评:本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.23、1.【解析】试题解析:该组的人数是:1222×2.25=1(人).考点:频数与频率.二、解答题(本大题共3个小题,共30分)24、【解析】
先确定最简公分母是,将方程两边同时乘以最简公分母约去分母可得:,然后解一元一次方程,最后再代入最简公分母进行检验.【详解】去分母得:,解得:,经检验是分式方程的解.本题主要考查解分式方程的方法,解决本题的关键是要熟练掌握解分式方程的方法和步骤.25、(1)①证明见解析;②证明见解析;(2)3【解析】
(1)①首先证明△ABA1是等边三角形,可得∠AA1B=∠A1BD1=60°,即可解决问题.②首先证明△OCD1≌△OBA(AAS),推出OC=OB,再证明△DCO≌△ABO(SAS)即可解决问题.(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版养老养生合伙经营退伙协议书3篇
- 2025版五星级酒店前台实习生聘用合同样本3篇
- 2024年软件开发与维护合同条款和说明
- 2025版网络数据保管员聘用合同正本
- 2025年度特种货物包机运输与安全监管协议书3篇
- 2025年中药饮片标准化生产与采购合作合同3篇
- 2025版虚拟偶像产业合伙协议3篇
- 2025版城市燃气供应设施基础工程承包合同范本3篇
- 2024年电影拍摄与后期制作服务协议版
- 2024年项目开发合同的要点
- 国开电大财务管理学习活动第4章 腾讯公司融资案例分析参考答案
- UPS现场巡检维护保养记录表
- 空白教案模板(表格形式-已排版)
- 中药学第十九章活血化瘀药课件
- 99S203消防水泵接合器安装图集
- 生产主管绩效考核表
- DB33-T1196-2020《农村生活污水处理设施污水排入标准》
- 实操考评表(模版)
- 桥梁的施工组织设计
- 消火栓试射试验记录
- 2022年高中统编教材历史培训 第20课 社会主义国家的发展与变化 PPT
评论
0/150
提交评论