版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2025届湖北省武汉市二中学广雅中学数学九上开学经典模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()A. B. C. D.2、(4分)某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x套,则x应满足的方程为()A. B. C. D.3、(4分)在▱ABCD中,∠A:∠B:∠C=1:2:1,则∠D等于()A.0° B.60° C.120° D.150°4、(4分)如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C. D.5、(4分)如图,点A在双曲线y=4x上,点B在双曲线y=kxk≠0,AB//x轴,分别过点A、B向x轴作垂线,垂足分别为D、C.若矩形ABCDA.12 B.10 C.8 D.66、(4分)已知,则()A. B. C. D.7、(4分)一次函数y=kx﹣b,当k<0,b<0时的图象大致位置是()A. B. C. D.8、(4分)菱形和矩形一定都具有的性质是()A.对角线相等 B.对角线互相垂直C.对角线互相平分 D.对角线互相平分且相等二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,已知边长为4的菱形ABCD中,AC=BC,E,F分别为AB,AD边上的动点,满足BE=AF,连接EF交AC于点G,CE、CF分别交BD与点M,N,给出下列结论:①∠AFC=∠AGE;②EF=BE+DF;③△ECF面积的最小值为3,④若AF=2,则BM=MN=DN;⑤若AF=1,则EF=3FG;其中所有正确结论的序号是_____.10、(4分)用反证法证明“若,则”时,应假设_____.11、(4分)如图,正方形的边长为6,点是上的一点,连接并延长交射线于点,将沿直线翻折,点落在点处,的延长线交于点,当时,则的长为________.12、(4分)若x、y为实数,且满足,则x+y的值是_________.13、(4分)如图,平行四边形中,点是边上一点,连接,将沿着翻折得,交于点.若,,,则_____.三、解答题(本大题共5个小题,共48分)14、(12分)为了维护国家主权和海洋权力,海监部门对我国领海实行常态化巡航管理,如图,正在执行巡航任务的海监船以每小时30海里的速度向正东方航行,在处测得灯塔在北偏东60°方向上,继续航行后到达处,此时测得灯塔在北偏东30°方向上.(1)求的度数;(2)已知在灯塔的周围15海里内有暗礁,问海监船继续向正东方向航行是否安全?15、(8分)化简:.16、(8分)如图,过轴正半轴上一点的两条直线,分别交轴于点、两点,其中点的坐标是,点在原点下方,已知.(1)求点的坐标;(2)若的面积为,求直线的解析式.17、(10分)计算(1)(2)18、(10分)(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)小张和小李练习射击,两人10次射击训练成绩(环数)的统计结果如表所示,平均数中位数众数方差小张7.27.571.2小李7.17.585.4通常新手的成绩不稳定,根据表格中的信息,估计小张和小李两人中新手是_____.20、(4分)观察下列各式:,,,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.21、(4分)一次函数y=-x+4的图像是由正比例函数____________的图像向___(填“上”或“下”)平移__个单位长度得到的一条直线.22、(4分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年人均收入美元,预计2019年人均收入将达到美元,设2017年到2019年该地区人均收入平均增长率为,可列方程为__________.23、(4分)函数中,自变量x的取值范围是.二、解答题(本大题共3个小题,共30分)24、(8分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm).请你用所学过的有关统计知识,回答下列问题(数据:15,16,16,14,14,15的方差,数据:11,15,18,17,10,19的方差:(1)分别求甲、乙两段台阶的高度平均数;(2)哪段台阶走起来更舒服?与哪个数据(平均数、中位数、方差和极差)有关?(3)为方便游客行走,需要陈欣整修上山的小路,对于这两段台阶路.在总高度及台阶数不变的情况下,请你提出合理的整修建议.25、(10分)(1)计算:5-+2(2)解不等式组:26、(12分)(1)计算:;(2)已知x=2−,求(7+4)x2+(2+)x+的值
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
通过一次函数的定义即可解答.【详解】解:已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,故k>0,即一次函数y=x+k的图象过一二三象限,答案选B.本题考查一次函数的定义与性质,熟悉掌握是解题关键.2、D【解析】解:原来所用的时间为:,实际所用的时间为:,所列方程为:.故选D.点睛:本题考查了由实际问题抽象出分式方程,关键是时间作为等量关系,根据每天多做x套,结果提前5天加工完成,可列出方程求解.3、C【解析】
在□ABCD中,,,而且四边形内角和是,由此得到,.【详解】解:在□ABCD中,,∴又∵,∴,.故选:C.本题主要考查四边形的内角和定理及平行四边形的性质,利用平行四边形的性质寻找各角之间的关系是解题的关键.4、C【解析】
由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.5、A【解析】
首先得出矩形EODA的面积为:4,利用矩形ABCD的面积是8,则矩形EOCB的面积为:4+8=1,再利用xy=k求出即可.【详解】过点A作AE⊥y轴于点E,∵点A在双曲线y=4∴矩形EODA的面积为:4,∵矩形ABCD的面积是8,∴矩形EOCB的面积为:4+8=1,则k的值为:xy=k=1.故选A.此题主要考查了反比例函数关系k的几何意义,得出矩形EOCB的面积是解题关键.6、B【解析】
先利用二次式的乘法法则与二次根式的性质求出m=2=,再利用夹值法即可求出m的范围.【详解】解:=2=,∵25<28<36,∴.故选:B.本题考查了二次根式的运算,二次根式的性质,估算无理数的大小,将m化简为是解题的键.7、A【解析】
先根据k<0,b<0判断出一次函数y=kx-b的图象经过的象限,进而可得出结论.【详解】解:∵一次函数y=kx-b,k<0,b<0,∴-b>0,∴函数图象经过一二四象限,故选:A.本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时的图象在一、二、四象限是解答此题的关键.8、C【解析】
菱形的对角线互相垂直且平分,矩形的对角线相等且平分.菱形和矩形一定都具有的性质是对角线互相平分.【详解】菱形和矩形一定都具有的性质是对角线互相平分.故选C.本题考查了菱形及矩形的性质,熟知菱形和矩形的对角线的性质是解决本题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、①③④【解析】
由“SAS”可证△BEC≌△AFC,再证△EFC是等边三角形,由外角的性质可证∠AFC=∠AGE;由点E在AB上运动,可得BE+DF≥EF;由等边三角形的性质可得△ECF面积的EC2,则当EC⊥AB时,△ECF的最小值为3;由等边三角形的性质和菱形的性质可求MN=BD﹣BM﹣DN=,由平行线分线段成比例可求EG=3FG,即可求解.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∵AC=BC,∴AB=BC=CD=AD=AC,∴△ABC,△ACD是等边三角形,∴∠ABC=∠BAC=∠ACB=∠DAC=60°,∵AC=BC,∠ABC=∠DAC,AF=BE,∴△BEC≌△AFC(SAS)∴CF=CE,∠BCE=∠ACF,∴∠ECF=∠BCA=60°,∴△EFC是等边三角形,∴∠EFC=60°,∵∠AFC=∠AFE+∠EFC=60°+∠AFE,∠AGE=∠AFE+∠CAD=60°+∠AFE,∴∠AFC=∠AGE,故①正确;∵BE+DF=AF+DF=AD,EF=CF≤AC,∴BE+DF≥EF(当点E与点B重合时,BE+DF=EF),故②不正确;∵△ECF是等边三角形,∴△ECF面积的EC2,∴当EC⊥AB时,△ECF面积有最小值,此时,EC=2,△ECF面积的最小值为3,故③正确;如图,设AC与BD的交点为O,若AF=2,则FD=BE=AE=2,∴点E为AB中点,点F为AD中点,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∠ABO=∠ABC=30°,∴AO=AB=2,BO=AO=2,∴BD=4,∵△ABC是等边三角形,BE=AE=2,∴CE⊥AB,且∠ABO=30°,∴BE=EM=2,BM=2EM,∴BM=,同理可得DN=,∴MN=BD﹣BM﹣DN=,∴BM=MN=DN,故④正确;如图,过点E作EH∥AD,交AC于H,∵AF=BE=1,∴AE=3,∵EH∥AD∥BC,∴∠AEH=∠ABC=60°,∠AHE=∠ACB=60°,∴△AEH是等边三角形,∴EH=AE=3,∵AD∥EH,∴,∴EG=3FG,故⑤错误,故答案为:①③④本题是四边形综合题,考查菱形的性质,等边三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理等知识,添加辅助线是解题的关键.10、【解析】
反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【详解】解:用反证法证明“若,则”时,应假设.故答案为:.此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.11、【解析】
根据翻折变换的性质可得AN=AB,∠BAE=∠NAE,再根据两直线平行,内错角相等可得∠BAE=∠F,从而得到∠NAE=∠F,根据等角对等边可得AM=FM,设CM=x,表示出DM、AM,然后利用勾股定理列方程求出x的值,从而得到AM的值,最后根据NM=AM-AN计算即可得解.【详解】∵△ABE沿直线AE翻折,点B落在点N处,∴AN=AB=6,∠BAE=∠NAE,∵正方形对边AB∥CD,∴∠BAE=∠F,∴∠NAE=∠F,∴AM=FM,设CM=x,∵AB=2CF=8,∴CF=3∴DM=6−x,AM=FM=3+x,在Rt△ADM中,由勾股定理得,,即解得x=,所以,AM=3+=,所以,NM=AM−AN=−6=本题考查翻折变换,解题关键在于熟练掌握勾股定理的性质.12、1【解析】
根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【详解】根据题意得:,解得:,∴x+y=1,故答案是:1.本题考查了非负数的性质:几个非负数的和为1时,这几个非负数都为1.13、【解析】
通过证明△AB'F∽△DEF,可得,可求AB'的长,由折叠的性质可得AB=AB'=.【详解】解:∵AB′∥ED∴△AB'F∽△DEF∴∴∴AB'=∵将△ABE沿着AE翻折得△AB′E,∴AB=AB'=,故答案为:.本题考查了翻折变换,平行四边形的性质,相似三角形的判定和性质,利用相似三角形的性质求线段的长度是本题的关键.三、解答题(本大题共5个小题,共48分)14、(1)30°;(2)海监船继续向正东方向航行没有触礁的危险,见解析【解析】
(1)在△ABC中,求出∠CAB、∠CBA的度数即可解决问题;
(2)作CD⊥AB于D.求出CD的值即可判定;【详解】解:(1)由题意得,∠CAB=30°,∠CBA=30°+90°=120°
∴∠ACB=180°-∠CBA-∠CAB=30°;
(2)由(1)可知∠ACB=∠CAB=30°,
∴AB=CB=30×=20(海里),∠CBD=60°,
过点C作CD⊥AB于点D,在Rt△CBD中,
CD=BCsin60°=10(海里)
10>15
∴海监船继续向正东方向航行是安全的.本题考查了解直角三角形的应用-方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.15、【解析】
根据分式的运算法则即可取出答案.【详解】解:原式.本题考查了分式的化简及学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16、(1)A(2,0);(2)直线解析式.【解析】
(1)利用勾股定理即可解题,(2)根据的面积为,得到,得到C(0,-1),再利用待定系数法即可解题.【详解】(1)∵OB=3,,∠AOB=90°∴OA=2,(勾股定理)∴A(2,0)(2)∵∴BC=4∴C(0,-1)∴设直线解析式y=kx+b(k0)∴,解得∴直线解析式.本题考查了一次函数与面积的实际应用,勾股定理的应用,用待定系数法求解函数解析式,中等难度,将面积问题转换成求点的坐标问题是解题关键.17、.(1);(2)【解析】
(1)首先将二次根式化为最简二次根式,然后根据二次根式的乘除运算法则计算即可;(2)首先将二次根式化为最简二次根式,然后根据二次根式的乘除运算法则计算即可.【详解】解:(1)原式=;(2)原式=..本题考查二次根式的乘除运算,解题的关键是熟练运用二次根式的性质和运算法则.18、(1)见解析(2)(4,2)(3)(6,0)【解析】
(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.【详解】证明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,对于直线y=﹣3x+3,由x=0得y=3∴P(0,3),∴OP=3由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°∴∠PSQ=45°=∠QPS∴PQ=SQ∴由(1)得SH=OQ,QH=OP∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1∴S(4,1),设直线PR为y=kx+b,则,解得∴直线PR为y=﹣x+3由y=0得,x=6∴R(6,0).本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、小李【解析】
根据方差的意义知,波动越大,成绩越不稳定.观察表格可得,小李的方差大,说明小李的成绩波动大,不稳定,【详解】观察表格可得,小李的方差大,意味着小李的成绩波动大,不稳定此题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定20、【解析】
观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.21、y=-x,上,4【解析】分析:根据函数图象平移的规则“上加下减”,即可得出将y=-x的函数图象向上平移4个单位即可得到函数y=-x+4的图象,此题得解.详解:根据图形平移的规则“上加下减”,即可得出:将y=−x的函数图象向上平移4个单位即可得到函数y=−x+4的图象.故答案为:y=−x;上;4.点睛:本题主要考查了一次函数图像与几何变换.关键在于牢记函数图像的平移规则.22、【解析】
根据题意列出2018年人均收入将达到的美元的式子,即可得出2019年人均收入将达到的美元的方程,进而得解.【详解】根据题意,可得2018年人均收入将达到,2019年人均收入将达到即为此题主要考查一元二次方程的实际应用,熟练掌握,即可解题.23、.【解析】
∵在实数范围内有意义,∴∴故答案为二、解答题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年学校语文教师工作计划例文(三篇)
- 2024年小学安全教育计划范例(二篇)
- 2024年土建工程师岗位的工作职责说明例文(七篇)
- 2024年学校公务用车管理制度模版(三篇)
- 2024年小学教研活动总结标准范本(二篇)
- 2024年小学图书借阅制度模版(五篇)
- 2024年固定资产借款合同范本(二篇)
- 2024年单位年终工作总结(四篇)
- 2024年安全生产工作总结简单版(四篇)
- 2024年工程预算员工作职责(四篇)
- 电动车证明模板
- 美标钢材理论重量整理(槽钢、角钢、H型钢-W型钢、T型钢)
- 管桩打桩规范及要求
- 光纤传感器的八大优点和分布式光纤传感器的六大特点
- 机关工作人员考勤表Excel模板
- 日照市重点支柱产业情况
- 学生课堂表现评价量表(共8页)
- 未就业证明模板村委会
- 《2021国标暖通图集资料》14K117-3 锥形风帽
- 公司固定动火区标识牌---副本
- 最新广州教科版英语四年级上册单词(精编版)
评论
0/150
提交评论