版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省资阳市乐至县良安中学2025届数学高一上期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,最小正周期为,且图象关于直线对称的是A. B.C. D.2.已知命题:,,则是()A., B.,C., D.,3.函数()的零点所在的一个区间是()A. B.C. D.4.若直线与圆交于两点,关于直线对称,则实数的值为()A. B.C. D.5.已知函数为偶函数,则A.2 B.C. D.6.函数其中(,)的图象如图所示,为了得到图象,则只需将的图象()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度7.函数(为自然对数的底)的零点所在的区间为A. B.C. D.8.已知函数是定义在上的偶函数,当时,,则A. B.C. D.9.下列函数中,既是奇函数又存在零点的函数是()A. B.C. D.10.已知全集,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.化简___________.12.将函数的图象先向下平移1个单位长度,在作关于直线对称的图象,得到函数,则__________.13.函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于原点对称,则的值为__________14.已知函数的图象过原点,且无限接近直线,但又不与该直线相交,则______15.定义在上的函数满足则________.16.已知,且的终边上一点P的坐标为,则=______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求;(2)设,,求的值.18.如图,在三棱柱中,平面,,在线段上,,.(1)求证:;(2)试探究:在上是否存在点,满足平面,若存在,请指出点的位置,并给出证明;若不存在,说明理由.19.已知求的值;求的值.20.若集合,,.(1)求;(2)若,求实数的取值范围.21.已知,且的最小正周期为.(1)求;(2)当时,求函数的最大值和最小值并求相应的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】因为函数的最小正周期是,故先排除选项D;又对于选项C:,对于选项A:,故A、C均被排除,应选B.2、D【解析】根据命题的否定的定义写出命题的否定,然后判断【详解】命题:,的否定是:,故选:D3、C【解析】将各区间的端点值代入计算并结合零点存在性定理判断即可.【详解】由,,,所以,根据零点存在性定理可知函数在该区间存在零点.故选:C4、A【解析】所以直线过圆的圆心,圆的圆心为,,解得.故选A.【点睛】本题给出直线与圆相交,且两个交点关于已知直线对称,求参数的值.着重考查了直线与圆的位置关系等知识,属于基础题.5、A【解析】由偶函数的定义,求得的解析式,再由对数的恒等式,可得所求,得到答案【详解】由题意,函数为偶函数,可得时,,,则,,可得,故选A【点睛】本题主要考查了分段函数的运用,函数的奇偶性的运用,其中解答中熟练应用对数的运算性质,正确求解集合A,再根据集合的运算是解答的关键,着重考查了推理与运算能力,属于基础题.6、D【解析】根据图像计算周期和最值得到,,再代入点计算得到,根据平移法则得到答案.【详解】根据图象:,,故,,故,,即,,,当时,满足条件,则,故只需将的图象向左平移个单位即可.故选:D.7、B【解析】分析:先判断函数的单调性,然后结合选项,利用零点的存在定理,即可求解.详解:由题意,函数为单调递减函数,又因为,由函数的零点判断可知,函数的零点在区间,故选B.点睛:本题主要考查了函数的零点的判定定理及应用,其中熟记函数的零点的存在定理是解答本题的关键,着重考查了推理与计算能力,属于基础题.8、D【解析】由函数是定义在上的偶函数,借助奇偶性,将问题转化到已知区间上,再求函数值【详解】因为是定义在上的偶函数,且当时,,所以,选择D【点睛】已知函数的奇偶性问题,常根据函数的奇偶性,将问题进行转化,转化到条件给出的范围再进行求解9、A【解析】判断函数的奇偶性,可排除选项得出正确答案【详解】因为是偶函数,故B错误;是非奇非偶函数,故C错误;是非奇非偶函数,故D错误;故选:A.10、C【解析】根据补集的定义计算可得;【详解】解:因为,所以;故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用向量的加法运算,即可得到答案;【详解】,故答案为:12、5【解析】利用平移变换和反函数的定义得到的解析式,进而得解.【详解】函数的图象先向下平移1个单位长度得到作关于直线对称的图象,即的反函数,则,,即,故答案为:5【点睛】关键点点睛:本题考查图像的平移变换和反函数的应用,利用反函数的性质求出的解析式是解题的关键,属于基础题.13、【解析】由题意知,先明确值,该函数平移后为奇函数,根据奇函数性质得图象过原点,由此即可求得值【详解】∵函数的最小正周期为,∴,即,将的图象向左平移个单位长度,所得函数为,又所得图象关于原点对称,∴,即,又,∴故答案为:【点睛】本题考查函数y=Asin(ωx+φ)的图象变换,考查奇偶函数的性质,要熟练掌握图象变换的方法14、##0.75【解析】根据条件求出,,再代入即可求解.【详解】因为的图象过原点,所以,即.又因为的图象无限接近直线,但又不与该直线相交,所以,,所以,所以故答案为:15、【解析】表示周期为3的函数,故,故可以得出结果【详解】解:表示周期为3的函数,【点睛】本题考查了函数的周期性,解题的关键是要能根据函数周期性的定义得出函数的周期,从而进行解题16、【解析】先求解,判断的终边在第四象限,计算,结合,即得解【详解】由题意,故点,故终边在第四象限且,又故故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】⑴将代入,利用特殊角的三角函数值即可求解⑵根据正弦和余弦的二倍角公式将函数化简,根据的取值范围,求得的值,然后代入到求解即可解析:(1).(2)由,得,因为,所以,因此,所以.18、(1)证明见解析;(2)答案见解析.【解析】(1)因为面,所以,结合就有面,从而.(2)取,在平面内过作交于,连结.可以证明四边形为平行四边形,从而,也就是平面.我们还可以在平面内过作,交于,连结.通过证明平面平面得到平面.【详解】解析:(1)∵面,面,∴.又∵,,面,,∴面,又面,∴.(2)(法一)当时,平面.理由如下:在平面内过作交于,连结.∵,∴,又,且,∴且,∴四边形为平行四边形,∴,又面,面,∴平面.(法二)当时,平面.理由如下:在平面内过作,交于,连结.∵,面,面,∴平面,∵,∴,∴,又面,面,∴平面.又面,面,,∴平面平面.∵面,∴平面.点睛:证明线面平行,我们既可以在已知平面中找出与已知直线平行的直线,通过线面平行的判定定理去考虑,也可以利用构造过已知直线的平面,证明该平面与已知平面平行.19、(1);(2)【解析】(1)作的平方可得,则,由的范围求解即可;(2)先利用降幂公式和切弦互化进行化简,得原式,将与代入求解即可【详解】(1)由题,,则,因为又,则,所以因此,(2)由题,由(1)可,代入可得原式【点睛】本题考查同角的平方关系式及完全平方公式的应用,考查降幂公式,考查切弦互化,考查运算能力20、(1);(2).【解析】(1)解不等式求出集合,再进行交集运算即可求解;(2)解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 饮料招标通知汇编
- 终止工程建设项目
- 权威技术服务合同协议范本
- 质量保证书模板格式
- 室内外地板采购合同样本
- 电子配件销售合同范本
- 投资理财合同协议关键条款解读
- 网络主播合同模板
- 活鸡采购合同
- 技术支持与技术咨询合同
- 电子元器件有效贮存期、超期复验及装机前的筛选要求
- 农村环境长效保洁服务投标方案(技术方案)
- 2024-2030年中国小口径人工血管行业市场现状分析及竞争格局与投资发展研究报告
- 【课件】第六单元碳和碳的氧化物+新版教材单元分析-2024-2025学年九年级化学人教版(2024)上册
- 人教版高中物理(必修三)同步讲义+练习第十一章 电路及其应用(含解析)
- 重症医学专业医疗质量控制指标(2024年版)学习解读课件
- 2024年军队文职统一考试《专业科目》管理学试卷(网友回忆版)含解析
- GB/T 44456-2024电子竞技场馆运营服务规范
- TSTIC 120082-2023 建筑产业电商平台服务规范
- 高中英语必背3500单词表
- 2024至2030年中国人工智能行业发展战略规划及投资机会预测报告
评论
0/150
提交评论