版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省邛崃市文昌中学校2025届高一数学第一学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在正四棱柱中,,点为棱的中点,过,,三点的平面截正四棱柱所得的截面面积为()A.2 B.C. D.2.如果全集,,则A. B.C. D.3.若集合中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰三角形4.某同学参加研究性学习活动,得到如下实验数据:x1.02.04.08.0y0.010.992.023现欲从理论上对这些数据进行分析并预测,则下列模拟函数合适的是()A. B.C. D.5.将函数()的图象向右平移个单位长度后,得到函数的图象,若为偶函数,则()A.5 B.C.4 D.6.已知函数,记,,,则,,的大小关系为()A. B.C. D.7.已知函数与的部分图象如图1(粗线为部分图象,细线为部分图象)所示,则图2可能是下列哪个函数的部分图象()A. B.C. D.8.函数的最小值为()A. B.3C. D.9.已知U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.
4,6
B.C
D.10.已知集合,,若,则实数的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.__________.12.已知函数,,则函数的最大值为______.13.计算______.14.函数,的图象恒过定点P,则P点的坐标是_____.15.若点在过两点的直线上,则实数的值是________.16.已知角的终边过点,则_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知平面直角坐标系中,,,Ⅰ若三点共线,求实数的值;Ⅱ若,求实数的值;Ⅲ若是锐角,求实数的取值范围18.2021年起,辽宁省将实行“3+1+2”高考模式,为让学生适应新高考的赋分模式某校在一次校考中使用赋分制给高三年级学生的化学成绩进行赋分,具体赋分方案如下:先按照考生原始分从高到低按比例划定A、B、C、D、E共五个等级,然后在相应赋分区间内利用转换公式进行赋分A等级排名占比15%,赋分分数区间是86-100;B等级排名占比35%,赋分分数区间是71-85;C等级排名占比35%,赋分分数区间是56-70;D等级排名占比13%,赋分分数区间是41-55;E等级排名占比2%,赋分分数区间是30-40;现从全年级的化学成绩中随机抽取100名学生的原始成绩(未赋分)进行分析,其频率分布直方图如图所示:(1)求图中a的值;(2)用样本估计总体的方法,估计该校本次化学成绩原始分不少于多少分才能达到赋分后的C等级及以上(含C等级)?(结果保留整数)(3)若采用分层抽样的方法,从原始成绩在[40,50)和[50,60)内的学生中共抽取5人,查看他们的答题情况来分析知识点上的缺漏,再从中选取2人进行调查分析,求这2人中恰有一人原始成绩在[40,50)内的概率.19.已知直线:与圆:交于,两点.(1)求的取值范围;(2)若,求.20.已知函数,(1)若,解不等式;(2)若函数恰有三个零点,,,求的取值范围21.已知函数.(1)若函数的定义域和值域均为,求实数的值;(2)若在区间上是减函数,且对任意的,总有,求实数的取值范围.(可能用到的不等关系参考:若,且,则有)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据题意画出截面,得到截面为菱形,从而可求出截面的面积.【详解】取的中点,的中点,连接,因为该几何体为正四棱柱,∴故四边形为平行四边形,所以,又,∴,同理,且,所以过,,三点平面截正四棱柱所得的截面为菱形,所以该菱形的面积为.故选:D2、C【解析】首先确定集合U,然后求解补集即可.【详解】由题意可得:,结合补集的定义可知.本题选择C选项.【点睛】本题主要考查集合的表示方法,补集的定义等知识,意在考查学生的转化能力和计算求解能力.3、D【解析】根据集合元素的互异性即可判断.【详解】由题可知,集合中的元素是的三边长,则,所以一定不是等腰三角形故选:D4、A【解析】由表中数据的增大趋势和函数的单调性判断可得选项.【详解】解:由表中的数据看出:y随x的增大而增大,且增大的幅度越来越小,而函数,在的增大幅度越来越大,函数呈线性增大,只有函数与已知数据的增大趋势接近,故选:A.5、C【解析】先由函数图象平移规律可得,再由为偶函数,可得(),则(),再由可得出的值.【详解】由题意可知,因为为偶函数,所以(),则(),因为,所以.故选:C.6、C【解析】根据题意得在上单调递增,,进而根据函数的单调性比较大小即可.【详解】解:因为函数定义域为,,故函数为奇函数,因为在上单调递增,在上单调递减,所以在上单调递增,因为,所以,所以,故选:C.7、B【解析】结合函数的奇偶性、特殊点的函数值确定正确选项.【详解】由图1可知为偶函数,为奇函数,A选项,,所以是偶函数,不符合图2.A错.C选项,,所以是偶函数,不符合图2.C错.D选项,,所以的定义域不包括,不符合图2.D错.B选项,,所以是奇函数,符合图2,所以B符合.故选:B8、C【解析】运用乘1法,可得,再利用基本不等式求最值即可.【详解】由三角函数的性质知当且仅当,即,即,时,等号成立.故选:C【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.9、B【解析】利用交、并、补集运算,对答案项逐一验证即可【详解】,A错误={2,3,4,5,6,7}=,B正确
{3,4,5,7},C错误,,D错误故选:B【点睛】本题考查集合的混合运算,较简单10、B【解析】根据集合,,可得,从而可得.【详解】因为,,所以,所以.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】应用诱导公式化简求值即可.【详解】原式.故答案为:1.12、##【解析】根据分段函数的定义,化简后分别求每段上函数的最值,比较即可得出函数最大值.【详解】当时,即或,解得或,此时,当时,即时,,综上,当时,,故答案为:13、7【解析】根据对数与指数的运算性质计算即可得解.【详解】解:.故答案为:7.14、【解析】令,解得,且恒成立,所以函数的图象恒过定点;故填.15、【解析】先由直线过两点,求出直线方程,再利用点在直线上,求出的值.【详解】由直线过两点,得,则直线方程为:,得,即,又点在直线上,得,得.故答案为:【点睛】本题考查了已知两点求直线的方程,直线方程的应用,属于容易题.16、【解析】由三角函数定义可直接得到结果.【详解】的终边过点,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)-2;(Ⅱ);(Ⅲ),且【解析】Ⅰ根据三点共线,即可得出,并求出,从而得出,求出;Ⅱ根据即可得出,进行数量积的坐标运算即可求出的值;Ⅲ根据是锐角即可得出,并且不共线,可求出,从而得出,且,解出的范围即可【详解】Ⅰ,B,P三点共线;;;;;Ⅱ;;;Ⅲ若是锐角,则,且不共线;;,且;解得,且;实数的取值范围为,且【点睛】本题主要考查向量平行时的坐标关系,向量平行的定义,以及向量垂直的充要条件,向量数量积的坐标运算,属于中档题.利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.18、(1)a0.030;(2)54分;(3).【解析】(1)由各组频率和为1列方程即可得解;(2)由频率分布直方图结合等级达到C及以上所占排名等级占比列方程即可的解;(3)列出所有基本事件及满足要求的基本事件,由古典概型概率公式即可得解.【详解】(1)由题意,(0.0100.0150.015a0.0250.005)101,所以a0.030;(2)由已知等级达到C及以上所占排名等级占比为15%+35%+35%=85%,假设原始分不少于x分可以达到赋分后的C等级及以上,易得,则有(0.0050.0250.0300.015)10(60x)0.0150.85,解得x≈53.33(分),所以原始分不少于54分才能达到赋分后的C等级及以上;(3)由题知得分在[40,50)和[50,60)内的频率分别为0.1和0.15,则抽取的5人中,得分在[40,50)内的有2人,得分在[50,60)的有3人记得分在[50,60)内的3位学生为a,b,c,得分在[40,50)内的2位学生为D,E,则从5人中任选2人,样本空间可记为{ab,ac,aD,aE,bc,bD,bE,cD,cE,DE},共包含10个样本用A表示“这2人中恰有一人得分在[40,50)内”,则A{aD,aE,bD,bE,cD,cE},A包含6个样本,故所求概率.【点睛】关键点点睛:解决本题的关键是对频率分布直方图的准确把握,在使用列举法解决古典概型的问题时,要注意不遗漏不重复.19、(1)(2)或.【解析】(1)将圆的一般方程化为标准方程,根据两个交点,结合圆心到直线的距离即可求得的取值范围.(2)根据垂径定理及,结合点到直线距离公式,即可得关于的方程,解方程即可求得的值.【详解】(1)由已知可得圆的标准方程为,圆心,半径,则到的距离,解得,即的取值范围为.(2)因为,解得所以由圆心到直线距离公式可得.解得或.【点睛】本题考查了直线与圆的位置关系判断,直线与圆相交时的弦长关系及垂径定理应用,属于基础题.20、(1)(2)【解析】(1)分当时,当时,讨论去掉绝对值,由一元二次不等式的求解方法可得答案;(2)得出分段函数的解析式,根据二次函数的性质和根与系数的关系可求得答案.【小问1详解】解:当时,原不等式可化为…①(ⅰ)当时,①式化为,解得,所以;(ⅱ)当时,①式化为,解得,所以综上,原不等式的解集为【小问2详解】解:依题意,因为,且二次函数开口向上,所以当时,函数有且仅有一个零点所以时,函数恰有两个零点所以解得不妨设,所以,是方程的两相异实根,则,所以因为是方程的根,且,由求根公式得因为函数在上单调递增,所以,所以.所以.所以a的取值范围是21、(1)2;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制定管理方式和工作计划方案
- 政府采购合同的产业合作项目案例分析
- 建筑装饰设计购销合同
- 建筑石子购销
- 信用社汽车贷款合同范例
- 果树幼苗采购合同范本
- 知识产权贯标咨询服务
- 门禁系统采购协议
- 家庭灭蟑螂服务协议
- 机械购销合同全文查阅
- 中药鉴定学智慧树知到答案2024年中国药科大学
- 现代通信技术导论智慧树知到期末考试答案章节答案2024年北京科技大学
- CFG桩计算表格(2012新规范)
- 二年级数学兴趣小组活动记录全记录
- 中药硬膏管理规定、操作流程及评分标准(共3页)
- 单值移动极差图(空白表格)
- 电镀生产工序
- 塔城地区事业单位专业技术各等级岗位基本任职资格条件指导意见
- 初中语文课外古诗文董仲舒《春秋繁露》原文及翻译
- (完整)(电子商务软件研发及产业化建设项目)监理月报(201202)
- 旅游出行安全告知书
评论
0/150
提交评论