版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省资阳市雁江区丰裕高中2025届数学高一上期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知全集,集合,则()A. B.C. D.2.函数的零点所在的区域为()A. B.C. D.3.函数的图象大致为A. B.C. D.4.“四边形是菱形”是“四边形是平行四边形”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知集合M={x|1≤x<3},N={1,2},则M∩N=()A. B.C. D.6.对空间中两条不相交的直线和,必定存在平面,使得()A. B.C. D.7.若||=1,||=2,||=,则与的夹角的余弦值为()A. B.C. D.8.函数的一个零点落在下列哪个区间()A.(0,1) B.(1,2)C.(2,3) D.(3,4)9.若函数是定义在上的偶函数,在上单调递减,且,则使得的的取值范围是()A. B.C. D.10.已知函数,若函数有四个零点,则的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若命题“是假命题”,则实数的取值范围是___________.12.在中,已知是x的方程的两个实根,则________13.已知幂函数的图像过点,则___________.14.已知直线平行,则实数的值为____________15.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为__________.16.设函数,其图象的一条对称轴在区间内,且的最小正周期大于,则的取值范围是____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某地区今年1月,2月,3月患某种传染病的人数分别为52,54,58为了预测以后各月的患病人数,甲选择的了模型,乙选择了模型,其中y为患病人数,x为月份数,a,b,c,p,q,r都是常数,结果4月,5月,6月份的患病人数分别为66,82,115,1你认为谁选择的模型较好?需说明理由2至少要经过多少个月患该传染病的人数将会超过2000人?试用你选择的较好模型解决上述问题18.已知集合M是满足下列性质的函数的全体:在定义域D内存在,使得成立函数是否属于集合M?说明理由;若函数属于集合M,试求实数k和b满足的约束条件;设函数属于集合M,求实数a的取值范围19.已知函数.(1)若在上单调递增,求的取值范围;(2)讨论函数的零点个数.20.某学校对高一某班的名同学的身高(单位:)进行了一次测量,将得到的数据进行适当分组后(每组为左闭右开区间),画出如图所示的频率分布直方图.(1)求直方图中的值,估计全班同学身高的中位数;(2)若采用分层抽样的方法从全班同学中抽取了名身高在内的同学,再从这名同学中任选名去参加跑步比赛,求选出的名同学中恰有名同学身高在内的概率.21.如图,某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道(,是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口是的中点,分别落在线段上.已知米,米,记.(1)试将污水净化管道总长度(即的周长)表示为的函数,并求出定义域;(2)问当取何值时,污水净化效果最好?并求出此时管道的总长度.(提示:.)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】首先确定全集,而后由补集定义可得结果【详解】解:,又,.故选B【点睛】本题考查了集合的补集,熟练掌握补集的定义是解决本题的关键,属于基础题型.2、C【解析】根据函数解析式求得,根据函数的零点的判定定理求得函数的零点所在区间【详解】解:函数,定义域为,且为连续函数,,,,故函数的零点所在区间为,故选:【点睛】本题主要考查函数的零点的判定定理的应用,属于基础题3、A【解析】利用函数为奇函数及在时函数值正负,即可得答案.【详解】由于函数的定义域关于原点对称,且,所以函数的奇函数,排除B,C选项;又因为,故排除D选项.故选:A.【点睛】本题考查根据函数的解析式选择函数的图象,考查数形结合思想,求解时注意根据解析式发现函数为奇函数及特殊点函数值的正负.4、A【解析】由菱形和平行四边形的定义可判断.【详解】解:四边形是菱形则四边形是平行四边形,反之,若四边形是平行四边形则四边形不一定是菱形,所以“四边形是菱形”是“四边形是平行四边形”充分不必要条件.故选:A.5、B【解析】根据集合交集的定义可得所求结果【详解】∵,∴故选B【点睛】本题考查集合的交集运算,解题的关键是弄清两集合交集中元素的特征,进而得到所求集合,属于基础题6、C【解析】讨论两种情况,利用排除法可得结果.【详解】和是异面直线时,选项A、B不成立,排除A、B;和平行时,选项D不成立,排除D,故选C.【点睛】本题主要考查空间线面关系的判断,考查了空间想象能力以及排除法的应用,属于基础题.7、B【解析】由题意把||两边平方,结合数量积的定义可得【详解】||=1,||=2,与的夹角θ,∴||27,∴12+2×1×2×cosθ+22=7,解得cosθ故选:B8、B【解析】求出、,由及零点存在定理即可判断.【详解】,,,则函数的一个零点落在区间上.故选:B【点睛】本题考查零点存在定理,属于基础题.9、C【解析】先求解出时的解集,再根据偶函数图像关于轴对称,写出时的解集,即得整个函数的解集.【详解】由于函数是偶函数,所以,由题意,当时,,则;又因为函数是偶函数,图象关于轴对称,所以当时,,则,所以的解集为.故选:C.10、B【解析】不妨设,的图像如图所示,则,,其中,故,也就是,则,因,故.故选:B.【点睛】函数有四个不同零点可以转化为的图像与动直线有四个不同的交点,注意函数的图像有局部对称性,而且还是倒数关系.二、填空题:本大题共6小题,每小题5分,共30分。11、####【解析】等价于,解即得解.【详解】解:因为命题“是假命题”,所以,所以.故答案为:12、##【解析】根据根与系数关系可得,,再由三角形内角和的性质及和角正切公式求,即可得其大小.【详解】由题设,,,又,且,∴.故答案为:.13、【解析】先设幂函数解析式,再将代入即可求出的解析式,进而求得.【详解】设,幂函数的图像过点,,,,故答案为:14、【解析】对x,y的系数分类讨论,利用两条直线平行的充要条件即可判断出【详解】当m=﹣3时,两条直线分别化为:2y=7,x+y=4,此时两条直线不平行;当m=﹣5时,两条直线分别化为:x﹣2y=10,x=4,此时两条直线不平行;当m≠﹣3,﹣5时,两条直线分别化为:y=x+,y=+,∵两条直线平行,∴,≠,解得m=﹣7综上可得:m=﹣7故答案为﹣7【点睛】本题考查了分类讨论、两条直线平行的充要条件,属于基础题15、【解析】正方体体积8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π故答案为:12π点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为:.16、【解析】由题可得,利用正弦函数的性质可得对称轴为,结合条件即得.【详解】∵,由,得,当时,,则,解得此时,当时,,则,解得此时,不合题意,当取其它整数时,不合题意,∴.故答案:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)应将作为模拟函数,理由见解析;(2)个月.【解析】根据前3个月的数据求出两个函数模型的解析式,再计算4,5,6月的数据,与真实值比较得出结论;由(1),列不等式求解,即可得出结论【详解】由题意,把,2,3代入得:,解得,,,所以,所以,,;把,2,3代入,得:,解得,,,所以,所以,,;、、更接近真实值,应将作为模拟函数令,解得,至少经过11个月患该传染病的人数将会超过2000人【点睛】本题主要考查了函数的实际应用问题,以及指数与对数的运算性质的应用,其中解答中认真审题,正确理解题意,求解函数的解析式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.18、(1);(2),;(3)【解析】(1)由,得,即.此方程无实根,函数不属于集合.(2)由,得解得为任意实数;(3)由,得,即整理得,有解;解得综上19、(1)(2)当时,有一个零点;当时,且当时,有两个零点,当时,有一个零点【解析】(1)由、都是单调递增函数可得的单调性,利用单调性可得答案;(2)时有一个零点;当时,利用单独单调性求得,分和讨论可得答案.【小问1详解】当时,单调递增,当时,单调递增,若在上单调递增,只需,.【小问2详解】当时,,此时,即,有一个零点;当时,,此时在上单调递增,,若,即,此时有一个零点;若,即,此时无零点,故当时,有两个零点,当时,有一个零点20、(1),中位数为(2)【解析】(1)利用频率分布直方图中所有矩形的面积之和为可求得的值,设中位数为,利用中位数左边的矩形面积之和为列等式可求得的值;(2)分析可知所抽取的名学生,身高在的学生人数为,分别记为、、,身高在的学生人数为,记为,列举出所有的基本事件,确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:由图可得,解得.设中位数为,前两个矩形的面积之和为,前三个矩形的面积之和为,可知,所以,,解得,故估计全班同学身高的中位数为.【小问2详解】解:所抽取的名学生,身高在的学生人数为,身高在的学生人数为,设身高在内的同学分别为、、,身高在内的同学为,则这个试验的样本空间可记为,共包含个样本点,记事件选出的名同学中恰有一名同学身高在内.则事件包含的基本事件有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 长期纸张制品购销合同
- 新型购销合同范本
- 太阳能光伏发电设备安装服务合同
- 摩托车运输协议
- 合同协议关于合作
- 2024年度二手房买卖合同中的房屋质量保证2篇
- 2024年度服装零售商与批发商货物买卖合同3篇
- 基于2024年度研发计划的研发合作合同
- 居间服务委托合同书样本
- 2024年度赠与合同的赠与物品范围及价值3篇
- 银行办公大楼物业服务投标方案投标文件(技术方案)
- 《机械设计基础》期末考试试卷六
- 2024年炉外精炼工(初级)职业技能鉴定考试题库(含答案)
- 2024-2030年挖泥船行业市场深度分析及发展策略研究报告
- DB11T 527-2021 配电室安全管理规范
- 2024年江西省交通设计研究院限责任公司招聘高频难、易错点500题模拟试题附带答案详解
- 2024年市养老护理员职业技能竞赛参考试题库(含答案)
- 物理学家伽利略课件
- 军人职业规划方案
- 2024年《网络数据安全管理条例》学习解读课件
- iso220002024食品安全管理体系标准
评论
0/150
提交评论