版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省天水市太京中学2025届高二上数学期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设等差数列的前n项和为,且,则()A.64 B.72C.80 D.1442.已知椭圆的两个焦点分别为,若椭圆上不存在点,使得是钝角,则椭圆离心率的取值范围是()A. B.C. D.3.已知点分别为圆与圆的任意一点,则的取值范围是()A. B.C. D.4.如图,在三棱锥中,,,,点在平面内,且,设异面直线与所成角为,则的最大值为()A. B.C. D.5.今天是星期四,经过天后是星期()A.三 B.四C.五 D.六6.从直线上动点作圆的两条切线,切点分别为、,则最大时,四边形(为坐标原点)面积是()A. B.C. D.7.以椭圆+=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是()A. B.C. D.8.已知实数a,b满足,则下列不等式中恒成立的是()A. B.C. D.9.南宋数学家杨辉所著的《详解九章算法》中有如下俯视图所示的几何体,后人称之为“三角垛”.其最上层有1个球,第二层有3个球,第三层有6个球,…,则第十层球的个数为()A.45 B.55C.90 D.11010.已知是边长为6的等边所在平面外一点,,当三棱锥的体积最大时,三棱锥外接球的表面积为()A. B.C. D.11.直线的倾斜角是()A. B.C. D.12.已知等差数列,,则公差d等于()A. B.C.3 D.-3二、填空题:本题共4小题,每小题5分,共20分。13.设双曲线的焦点为,点为上一点,,则为_____.14.已知满足约束条件,则的最小值为___________15.小明同学发现家中墙壁上灯光边界类似双曲线的一支.如图,P为双曲线的顶点,经过测量发现,该双曲线的渐近线相互垂直,AB⊥PC,AB=60cm,PC=20cm,双曲线的焦点位于直线PC上,则该双曲线的焦距为____cm.16.已知曲线,则以下结论正确的是______.①曲线C关于点对称;②曲线C关于y轴对称;③曲线C被x轴所截得的弦长为2;④曲线C上的点到原点距离都不超过2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知:对任意,都有;:存在,使得(1)若“且”为真,求实数的取值范围;(2)若“或”为真,“且”为假,求实数的取值范围18.(12分)已知椭圆,离心率分别为左右焦点,椭圆上一点满足,且的面积为1.(1)求椭圆的标准方程;(2)过点作斜率为的直线交椭圆于两点.过点且平行于的直线交椭圆于点,证明:为定值.19.(12分)设函数.(1)当k=1时,求函数的单调区间;(2)当时,求函数在上的最小值m和最大值M.20.(12分)如图,已知平面,底面为正方形,,分别为的中点(1)求证:平面;(2)求与平面所成角的正弦值21.(12分)已知函数.(1)求的单调区间;(2)求函数在区间上的最大值与最小值.22.(10分)已知各项为正数的等比数列中,,.(1)求数列的通项公式;(2)设,求数列的前n项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用等差数列下标和性质,求得,再用等差数列前项和公式即可求解.【详解】根据等差数列的下标和性质,,解得,.故选:B.2、C【解析】点P取端轴的一个端点时,使得∠F1PF2是最大角.已知椭圆上不存在点P,使得∠F1PF2是钝角,可得b≥c,利用离心率计算公式即可得出【详解】∵点P取端轴的一个端点时,使得∠F1PF2是最大角已知椭圆上不存在点P,使得∠F1PF2是钝角,∴b≥c,可得a2﹣c2≥c2,可得:a∴故选C【点睛】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围).3、B【解析】先判定两圆的位置关系为相离的关系,然后利用几何方法得到的取值范围.【详解】的圆心为,半径,的圆心为,半径,圆心距,∴两圆相离,∴,故选:B.4、D【解析】设线段的中点为,连接,过点在平面内作,垂足为点,证明出平面,然后以点为坐标原点,、、分别为、、轴的正方向建立空间直角坐标系,设,其中,且,求出的最大值,利用空间向量法可求得的最大值.【详解】设线段的中点为,连接,,为的中点,则,,则,,同理可得,,,平面,过点在平面内作,垂足为点,因为,所以,为等边三角形,故为的中点,平面,平面,则,,,平面,以点为坐标原点,、、分别为、、轴的正方向建立如下图所示的空间直角坐标系,因为是边长为的等边三角形,为的中点,则,则、、、,由于点在平面内,可设,其中,且,从而,因为,则,所以,,故当时,有最大值,即,故,即有最大值,所以,.故选:D.【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.5、C【解析】求出二项式定理的通项公式,得到除以7余数是1,然后利用周期性进行计算即可【详解】解:一个星期的周期是7,则,即除以7余数是1,即今天是星期四,经过天后是星期五,故选:6、B【解析】分析可知当时,最大,计算出、,进而可计算得出四边形(为坐标原点)面积.【详解】圆的圆心为坐标原点,连接、、,则,设,则,,则,当取最小值时,,此时,,,,故,此时,.故选:B.7、B【解析】根据椭圆的几何性质求椭圆的焦点坐标和长轴端点坐标,由此可得双曲线的a,b,c,再求双曲线的标准方程.【详解】∵椭圆的方程为+=1,∴椭圆的长轴端点坐标为,,焦点坐标为,,∴双曲线的焦点在y轴上,且a=1,c=2,∴b2=3,∴双曲线方程为,故选:B.8、D【解析】利用特殊值排除错误选项,利用函数单调性证明正确选项.【详解】时,,但,所以A选项错误.时,,但,所以B选项错误.时,,但,所以C选项错误.在上递增,所以,即D选项正确.故选:D9、B【解析】根据题意,发现规律并将规律表达出来,第层有个球.【详解】根据规律,可以得知:第一层有个球;第二层有个球;第三层有个球,则根据规律可知:第层有个球设第层的小球个数为,则有:故第十层球的个数为:故选:10、C【解析】由题意分析可得,当时三棱锥的体积最大,然后作图,将三棱锥还原成正三棱柱,按照正三棱柱外接球半径的计算方法来计算,即可计算出球半径,从而完成求解.【详解】由题意可知,当三棱锥的体积最大时是时,为正三角形,如图所示,将三棱锥补成正三棱柱,该正三棱柱的外接球就是三棱锥的外接球,而正三棱柱的外接球球心落在上下底面外接圆圆心连线的中点上,设外接圆半径为,三棱锥外接球半径为,由正弦定理可得:,所以,,所以三棱锥外接球的表面积为.故选:C.11、A【解析】将直线方程化为斜截式,由此确定斜率;根据斜率和倾斜角关系可得结果.【详解】设直线的倾斜角为,则,由得:,则斜率,.故选:A.12、B【解析】根据题意,利用公式,即可求解.【详解】由题意,等差数列,,可得等差数列的公差.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将方程化为双曲线的标准方程,再利用双曲线的定义进行求解.【详解】将化为,所以,,由双曲线的定义,得:,即,所以或(舍)故答案为:.14、【解析】根据题意,作出可行域,进而根据几何意义求解即可.【详解】解:作出可行域如图,将变形为,所以根据几何意义,当直线过点时,有最小值,所以联立方程得,所以的最小值为故答案为:15、【解析】建立直角坐标系,利用代入法、双曲线的对称性进行求解即可.【详解】建立如图所示的直角坐标系,设双曲线的标准方程为:,因为该双曲线的渐近线相互垂直,所以,即,因为AB=60cm,PC=20cm,所以点的坐标为:,代入,得:,因此有,所以该双曲线的焦距为,故答案为:16、②④【解析】将x换成,将y换成,若方程不变则关于原点对称;将x换成,曲线的方程不变则关于y轴对称;令通过解方程即可求得被x轴所截得的弦长;利用基本不等式即可判断出曲线C上y轴右侧的点到原点距离是否不超过2,根据曲线C关于y轴对称,即可判断出曲线C上的点到原点距离是否都不超过2.【详解】对于①,将x换成,将y换成,方程改变,则曲线C关于点不对称,故①错误;对于②,将x换成,曲线的方程不变,则曲线C关于y轴对称,故②正确;对于③,令得,,解得,即曲线C与x轴的交点为和,则曲线C被x轴所截得的弦长为,故③错误;对于④,当时,,可得,当且仅当时取等号,即,则,即曲线C上y轴右侧的点到原点的距离都不超过2,此曲线关于y轴对称,即曲线C上y轴左侧的点到原点的距离也不超过2,故④正确;故答案为:②④.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2).【解析】(1)由已知得,均为真命题,分别求得为真命题,为真命题时,实数的取值范围,再由集合的交集运算求得答案;(2)由已知得,一真一假,建立不等式组,求解即可.【小问1详解】解:因为“且”为真命题,所以,均为真命题若为真命题,则,解得;若为真命题,则,当且仅当,即时,等号成立,此时故实数的取值范围是;【小问2详解】解:若“或”为真,“且”为假,则,一真一假当真,假时,则得;当假,真时,则得故实数的取值范围为18、(1)(2)证明见解析【解析】(1)方法一:根据离心率以及,可得出,将条件转化为点在以为直径的圆上,即为圆与椭圆的交点,将的面积用表示,求出,进而求出椭圆的标准方程;方法二:根据椭圆的定义,,再根据勾股定理和直角三角形的面积公式,即可解得,又由离心率求出,则可求出椭圆的标准方程;(2)设出直线的方程,代入椭圆方程,根据韦达定理表示出,再将直线的方程代入椭圆方程,求出,则为定值.【小问1详解】方法一:由离心率,得:,所以椭圆上一点,满足,所以点为圆:与椭圆的交点,联立方程组解得所以,解得:,所以椭圆的标准方程为:.方法二:由椭圆定义;,因为,所以,得到:,即,又,得所以椭圆C的标准方程为:;【小问2详解】设直线AB的方程为:.得设过点且平行于的直线方程:.19、(1)增区间为(2),【解析】(1)求导,由判别式可判断导数符号,然后可得;(2)求导,求导数零点,比较函数极值和端点函数值,结合单调性可得.【小问1详解】因为,所以,,因为,所以恒成立所以的增区间为.【小问2详解】当时,,令,解得,当时,,当时,,当时,所以,函数在上单调递增,在上单调递减,在上单调递增.因为,所以在区间上的最大值,最小值为20、(1)证明见解析;(2).【解析】(1)建立空间直角坐标系,利用向量法证得平面.(2)利用直线的方向向量,平面的法向量,计算线面角的正弦值.【详解】(1)以为原点建立如图所示空间直角坐标系,则.,,所以,由于,所以平面.(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度物业管理公司车位使用权授权合同3篇
- 宁波2024年商业物业买卖合同
- 事业单位公有住房租赁合同
- 婚庆简单合同范本
- 2024二手挖掘机销售合同书3篇
- 2024版电动车充电设施安装合同3篇
- 2024年二手商品房买卖合同细节分析3篇
- 2024版个人建房环保要求合同2篇
- 杉木买卖合同范本 范本版
- 2024年度钢结构工程环保与节能减排合同
- 锂电PACK设计标准
- 兽医流行病学病因推断
- 青少年科技创新大赛选题及分析(课堂PPT)
- 信息技术课课堂教学评价表
- 施工进度计划书
- 管道施工HSE主要风险识别及预防措施
- 小学课题研究:《小学数学计算教学有效性的研究》开题报告
- 血栓弹力图课件-PPT
- 煤矿选煤厂各岗位风险源辨识卡
- 红旗驾驶员先进事迹
- 光荣升旗手PPT课件
评论
0/150
提交评论