![西藏自治区昌都市第三高级中学2025届数学高一上期末学业质量监测模拟试题含解析_第1页](http://file4.renrendoc.com/view12/M01/1A/1C/wKhkGWcUCa2AIPnTAAIQKxD0ep0976.jpg)
![西藏自治区昌都市第三高级中学2025届数学高一上期末学业质量监测模拟试题含解析_第2页](http://file4.renrendoc.com/view12/M01/1A/1C/wKhkGWcUCa2AIPnTAAIQKxD0ep09762.jpg)
![西藏自治区昌都市第三高级中学2025届数学高一上期末学业质量监测模拟试题含解析_第3页](http://file4.renrendoc.com/view12/M01/1A/1C/wKhkGWcUCa2AIPnTAAIQKxD0ep09763.jpg)
![西藏自治区昌都市第三高级中学2025届数学高一上期末学业质量监测模拟试题含解析_第4页](http://file4.renrendoc.com/view12/M01/1A/1C/wKhkGWcUCa2AIPnTAAIQKxD0ep09764.jpg)
![西藏自治区昌都市第三高级中学2025届数学高一上期末学业质量监测模拟试题含解析_第5页](http://file4.renrendoc.com/view12/M01/1A/1C/wKhkGWcUCa2AIPnTAAIQKxD0ep09765.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西藏自治区昌都市第三高级中学2025届数学高一上期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知平面直角坐标系中,的顶点坐标分别为,,,G为所在平面内的一点,且满足,则G点的坐标为()A. B.C. D.2.若,其中,则()A. B.C. D.3.如图,已知,,共线,且向量,则()A. B.C. D.4.若,,则的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限5.函数的定义域是A.(-1,2] B.[-1,2]C.(-1,2) D.[-1,2)6.已知点,直线与线段相交,则直线的斜率的取值范围是()A.或 B.C. D.7.“是第一或第二象限角”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知,,且,则的最小值为()A.2 B.3C.4 D.89.若,则的值为A. B.C.2 D.310.某市政府为了增加农民收入,决定对该市特色农副产品的科研创新和广开销售渠道加大投入,计划逐年加大研发和宣传资金投入.若该政府2020年全年投人资金120万元,在此基础上,每年投入的资金比上一年增长12%,则该政府全年投入的资金翻一番(2020年的两倍)的年份是(参考数据:lg1.12≈0.05,lg2≈0.30)()A.2027年 B.2026年C.2025年 D.2025届二、填空题:本大题共6小题,每小题5分,共30分。11.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是______.12.不等式的解集是________.13.已知集合A={2,log2m},B={m,n}(m,n∈R),且,则A∪B=___________.14.函数的定义域是___________.15.若则函数的最小值为________16.若函数在区间内有最值,则的取值范围为_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,弹簧挂着的小球做上下振动,它在(单位:)时相对于平衡位置(静止时的位置)的高度(单位:)由关系式确定,其中,,.在一次振动中,小球从最高点运动至最低点所用时间为.且最高点与最低点间的距离为(1)求小球相对平衡位置高度(单位:)和时间(单位:)之间的函数关系;(2)小球在内经过最高点的次数恰为50次,求的取值范围18.已知函数,,.(1)若函数与的图象的一个交点的横坐标为2,求a;(2)若,求证:.19.已知全集,集合,集合.(1)求;(2)若集合,且集合与集合满足,求实数的取值范围.20.已知平行四边形的三个顶点的坐标为.(Ⅰ)在中,求边中线所在直线方程(Ⅱ)求的面积.21.计算(1);(2).
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用向量的坐标表示以及向量坐标的加法运算即可求解.【详解】由题意易得,,,.即G点的坐标为,故选:A.2、D【解析】化简已知条件,结合求得的值.【详解】依题意,,所以,,由于,所以.故选:D3、D【解析】由已知得,再利用向量的线性可得选项.【详解】因为,,,三点共线,所以,所以.故选:D.4、D【解析】根据同角三角函数关系式,化简,结合三角函数在各象限的符号,即可判断的终边所在的象限.【详解】根据同角三角函数关系式而所以故的终边在第四象限故选:D【点睛】本题考查了根据三角函数符号判断角所在的象限,属于基础题.5、A【解析】根据二次根式的性质求出函数的定义域即可【详解】由题意得:解得:﹣1<x≤2,故函数的定义域是(﹣1,2],故选A【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.6、A【解析】,所以直线过定点,所以,,直线在到之间,所以或,故选A7、A【解析】利用充分必要条件的定义判断.【详解】若角的终边在第一或第二象限,则,反过来,若,则的终边可能在第一或第二象限,也有可能在轴正半轴上.所以“是第一或第二象限角”是“”的充分不必要条件.故选:A8、C【解析】根据条件,变形后,利用均值不等式求最值.【详解】因为,所以.因为,,所以,当且仅当,时,等号成立,故的最小值为4.故选:C9、A【解析】利用同角三角函数的基本关系,把要求值的式子化为,即可得到答案.【详解】由题意,因为,所以,故选A【点睛】本题主要考查了三角函数的化简求值问题,其中解答中熟记三角恒等变换的公式,合理化简、运算是解答的关键,着重考查了运算与求解能力.10、B【解析】根据题意列出指数方程,取对数,根据对数的运算性质,结合题中所给的数据进行求解即可.【详解】设第n(n∈N*)年该政府全年投入的资金翻一番,依题意得:120(1+12%)n-1=240,则lg[120(1+12%)n-1]=lg240,∴lg120+(n-1)lg1.12=lg240,∴(n-1)lg1.12=lg2,∴,即该政府全年投入的资金翻一番的年份是2026年,故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、60°【解析】取BC的中点E,则,则即为所求,设棱长为2,则,12、【解析】由题意,,根据一元二次不等式的解法即可求出结果.【详解】由题意,或,故不等式的解集为.故答案为:.【点睛】本题主要考查了一元二次不等式的解法,属于基础题.13、【解析】根据条件得到,解出,进而得到.【详解】因为,所以且,所以,解得:,则,,所以.故答案为:14、【解析】利用根式、分式的性质求函数定义域即可.【详解】由解析式知:,则,可得,∴函数定义域为.故答案为:.15、1【解析】结合图象可得答案.【详解】如图,函数在同一坐标系中,且,所以在时有最小值,即.故答案为:1.16、【解析】当函数取得最值时有,由此求得的值,根据列不等式组,解不等式组求得的取值范围(含有),对赋值求得的具体范围.【详解】由于函数取最值时,,,即,又因为在区间内有最值.所以时,有解,所以,即,由得,当时,,当时,又,,所以的范围为.【点睛】本小题主要考查三角函数最值的求法,考查不等式的解法,考查赋值法,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解析】(1)首先根据题意得到,,从而得到,(2)根据题意,当时,小球第一次到达最高点,从而得到,再根据周期为,即可得到.【详解】(1)因为小球振动过程中最高点与最低点的距离为,所以因为在一次振动中,小球从最高点运动至最低点所用时间为,所以周期为2,即,所以所以,(2)由题意,当时,小球第一次到达最高点,以后每隔一个周期都出现一次最高点,因为小球在内经过最高点的次数恰为50次,所以因为,所以,所以的取值范围为(注:的取值范围不考虑开闭)18、(1)(2)证明见解析【解析】(1)根据题意,分析可得,变形解可得答案;(2)根据题意,设,结合二次函数的性质分析可得,当时,恒成立,即可得结论【小问1详解】根据题意,若函数与的图象的一个交点的横坐标为2,则,变形可得或,解可得;无解;故;【小问2详解】证明:设,当时,,其对称轴为,又由,则其对称轴,又由,在区间,上为增函数,则,当时,,开口向上,当时,,必有恒成立,综合可得:当是,恒成立,即恒成立19、(1);(2)【解析】(1)化简集合,按照补集,并集定义,即可求解;(2),得,结合数轴,确定集合端点位置,即可求解.【详解】(1)∵;∴;∴;(2)∵,∴;∴,∴,∴实数的取值范围为.【点睛】本题考查集合间的运算,以及由集合关系求参数,属于基础题.20、(I);(II)8.【解析】(I)由中点坐标公式得边的中点,由斜率公式得直线斜率,进而可得点斜式方程,化为一般式即可;(II)由两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电影院声光系统优化及体验提升报告
- 合同变更与转让流程优化方案
- 私人出租车司机雇佣合同协议
- 农村桥梁维修及加固合同书
- 磁头产品技术培训开启科技教育新篇章
- 2024-2025学年高中地理课时分层作业7农业的区位选择含解析新人教版必修2
- 物联网在智慧城市建设中的应用与前景
- 生产线工艺流程图基础绘制与实战案例解析培训
- 知识产权商业化运用与交易模式
- 社交平台下的网络直播营销模式分析
- 建设平安校园筑牢安全防线
- 黑龙江省齐齐哈尔市2023-2024学年高一上学期1月期末英语试题(含答案解析)
- 统编版道德与法治三年级下册全册教学课件
- 精神科常见药物中毒急救与护理课件
- 新生儿的护理 新生儿科课件
- 麦当劳市场调研
- DB32/T 2283-2024 公路工程水泥搅拌桩成桩质量检测规程
- 费曼学习法,世界公认最好的学习方法
- 《电机与电气控制(第三版)》 课件全套 课题1-6 直流电机的应用- 常用机床电气控制线路的安装与调试
- 视频监控维保项目投标方案(技术标)
- 2024标准版安全生产责任制培训记录
评论
0/150
提交评论