2025届江苏省三校数学高二上期末质量检测模拟试题含解析_第1页
2025届江苏省三校数学高二上期末质量检测模拟试题含解析_第2页
2025届江苏省三校数学高二上期末质量检测模拟试题含解析_第3页
2025届江苏省三校数学高二上期末质量检测模拟试题含解析_第4页
2025届江苏省三校数学高二上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省三校数学高二上期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆和椭圆.直线与圆交于、两点,与椭圆交于、两点.若时,的取值范围是,则椭圆的离心率为()A. B.C. D.2.在等差数列中,若的值是A.15 B.16C.17 D.183.平行直线:与:之间的距离等于()A. B.C. D.4.已知关于的不等式的解集是,则的值是()A B.5C. D.75.已知直线:和:,若,则实数的值为()A. B.3C.-1或3 D.-16.已知圆:,点是直线:上的动点,过点引圆的两条切线、,其中、为切点,则直线经过定点()A. B.C. D.7.若定义在R上的函数满足,则不等式的解集为()A. B.C. D.8.小王与小张二人参加某射击比赛预赛的五次测试成绩如下表所示,设小王与小张成绩的样本平均数分别为和,方差分别为和,则()第一次第二次第三次第四次第五次小王得分(环)910579小张得分(环)67557A. B.C. D.9.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前6项分别为1,5,11,21,37,61,则该数列的第7项为()A.95 B.131C.139 D.14110.杨辉三角是二项式系数在三角形中的一种几何排列,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中就有出现.在欧洲,帕斯卡(1623~1662)在1654年发现这一规律,比杨辉要迟了393年.如图所示,在“杨辉三角”中,从1开始箭头所指的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,…,则在该数列中,第37项是A.153 B.171C.190 D.21011.已知椭圆:的左、右焦点分别为、,为坐标原点,为椭圆上一点.与轴交于一点,,则椭圆C的离心率为()A. B.C. D.12.已知,若是函数一个零点,则的值为()A.0 B.C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.若圆的一条直径的端点是、,则此圆的方程是_______14.某班学号的学生铅球测试成绩如下表:学号12345678成绩9.17.98.46.95.27.18.08.1可以估计这8名学生铅球测试成绩的第25百分位数为___________.15.已知是数列的前n项和,且,则________;数列的通项公式________16.已知双曲线C:的一条渐近线与直线l:平行,则双曲线C的离心率是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四边形为矩形,,,为的中点,与交于点,平面.(1)若,求与所成角的余弦值;(2)若,求直线与平面所成角的正弦值.18.(12分)如图,在长方体中,,,,M为上一点,且(1)求点到平面的距离;(2)求二面角的余弦值19.(12分)已知数列{}的首项=2,(n≥2,),,.(1)证明:{+1}为等比数列;(2)设数列{}的前n项和,求证:.20.(12分)已知的三个内角,,的对边分别为,,,且满足.(1)求角的大小;(2)若,,,求的长.21.(12分)如图,已知三棱柱的侧棱与底面垂直,,,和分别是和的中点,点在直线上,且.(1)证明:无论取何值,总有;(2)是否存在点,使得平面与平面所成角为?若存在,试确定点的位置;若不存在,请说明理由.22.(10分)已知函数(1)讨论函数的单调性;(2)证明:对任意正整数n,

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题设,根据圆与椭圆的对称性,假设在第一象限可得,结合已知有,进而求椭圆的离心率.【详解】由题设,圆与椭圆的如下图示:又时,的取值范围是,结合圆与椭圆的对称性,不妨假设在第一象限,∴从0逐渐增大至无穷大时,,故,∴故选:C.2、C【解析】由已知直接利用等差数列的性质求解【详解】在等差数列{an}中,由a1+a2+a3=3,得3a2=3,即a2=1,又a5=9,∴a8=2a5-a2=18-1=17故选C【点睛】本题考查等差数列的通项公式,考查等差数列的性质,是基础题3、B【解析】先由两条直线平行解出,再按照平行线之间距离公式求解.【详解】,则:,即,距离为.故选:B.4、D【解析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D5、D【解析】利用两直线平行列式求出a值,再验证即可判断作答.【详解】因,则,解得或,当时,与重合,不符合题意,当时,,符合题意,所以实数的值为-1.故选:D6、D【解析】根据圆的切线性质,结合圆的标准方程、圆与圆的位置关系进行求解即可.【详解】因为、是圆的两条切线,所以,因此点、在以为直径的圆上,因为点是直线:上的动点,所以设,点,因此的中点的横坐标为:,纵坐标为:,,因此以为直径的圆的标准方程为:,而圆:,得:,即为直线的方程,由,所以直线经过定点,故选:D【点睛】关键点睛:由圆的切线性质得到点、在以为直径的圆上,运用圆与圆的位置关系进行求解是解题的关键.7、B【解析】构造函数,根据题意,求得其单调性,利用函数单调性解不等式即可.【详解】构造函数,则,故在上单调递减;又,故可得,则,即,解得,故不等式解集为.故选:B.【点睛】本题考察利用导数研究函数单调性,以及利用函数单调性求解不等式,解决本题的关键是根据题意构造函数,属中档题.8、C【解析】根据图表数据可以看出小王和小张的平均成绩和成绩波动情况.【详解】解:从图表中可以看出小王每次的成绩均不低于小张,但是小王成绩波动比较大,故设小王与小张成绩的样本平均数分别为和,方差分别为和.可知故选:C9、A【解析】利用已知条件,推出数列的差数的差组成的数列是等差数列,转化求解即可【详解】由题意可知,1,5,11,21,37,61,……,的差的数列为4,6,10,16,24,……,则这个数列的差组成的数列为:2,4,6,8,……,是一个等差数列,设原数列的第7项为,则,解得,所以原数列的第7项为95,故选:A10、C【解析】根据“杨辉三角”找出数列1,2,3,3,6,4,10,5,…之间的关系即可。【详解】由题意可得从第3行起的每行第三个数:,所以第行的第三个数为在该数列中,第37项为第21行第三个数,所以该数列的第37项为故选:C【点睛】本题主要考查了归纳、推理的能力,属于中等题。11、C【解析】由椭圆的性质可先求得,故可得,再由椭圆的定义得a,c的关系,故可得答案【详解】,,又,,则,,则,,由椭圆的定义得,,,故选:C12、A【解析】首先根据题意求出,然后设函数,利用以及的单调性,并结合对数运算即可求解.【详解】由题意可知,,所以,不妨设,(),故,从而,易知在上单调递增,故,即,从而.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先设圆上任意一点的坐标,然后利用直径对应的圆周角为直角,再利用向量垂直建立方程即可【详解】设圆上任意一点的坐标为可得:,则有:,即解得:故答案为:14、【解析】利用百分位数的计算方法即可求解.【详解】将以上数据从小到大排列为,,,,,,,;%,则第25百分位数第项和第项的平均数,即为.故答案为:.15、①.②.【解析】当时,,推导出,从而数列是从第二项起,公比为的等比数列,进而能求出数列的通项公式,即可求得答案.【详解】为数列的前项和,①时,②①②,得:,,,,数列的通项公式为.故答案为:;.16、【解析】先用两直线平行斜率相等求出,再利用离心率的定义求解即可.【详解】由题意可得双曲线C的一条渐近线方程为,则,即,则,故双曲线C的离心率故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)以为原点,、所在的直线为、轴,以过点垂直于面的直线为轴,建立空间直角坐标系,利用空间向量法可求得与所成角的余弦值;(2)计算出平面的法向量,利用空间向量法可求得直线与平面所成角的正弦值.【小问1详解】解:如图,以为原点,、所在的直线为、轴,以过点垂直于面的直线为轴,建立空间直角坐标系,,,则,则,故,因为平面,平面,则,若,则,故、、、,则,,.因此,若,则与所成角的余弦值为.【小问2详解】解:若,则、,,,,设平面的法向量为,则,取,可得,,所以直线与平面所成角的正弦值为.18、(1)(2)【解析】(1)以A为原点,以AB、AD、所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,利用空间向量求解,(2)求出和的法向量,利用空间向量求解【小问1详解】以A为原点,以AB、AD、所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系由,,,,所以,,,因此,,,设平面的法向量,则,,所以,取,则,,于是,所以点到平面的距离【小问2详解】由,,设平面的法向量,则,,所以,取,则,,于是,由(1)知平面的法向量为,记二面角的平面角为,则,由图可知二面角为锐角,所以所求二面角的余弦值为19、(1)证明见解析(2)证明见解析【解析】(1)利用已知条件证明为常数即可;(2)求出和通项公式,再求出通项公式,利用裂项相消法可求,判断的单调性即可求其范围.【小问1详解】∵=2,(n≥2,),∴当n≥2时,(常数),∴数列{+1}是公比为3的等比数列;【小问2详解】由(1)知,数列{+1}是以3为首项,以3为公比的等比数列,∴,∴,∴∵,∴∴,∴∴.当n≥2时,∴{}为递增数列,故的最小值为,∴.20、(1);(2).【解析】(1)由正弦定理化边为角后,结合两角和的正弦公式、诱导公式可求得;(2)用表示出,然后平方由数量积的运算求得向量的模(线段长度)【详解】(1)因为,所以由正弦定理可得,即,因为,所以,,∵,故;(2)由,得,所以,所以.21、(1)证明见解析;(2)不存在,理由见解析.【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,计算得出,即可得出结论;(2)计算出平面的一个法向量,利用空间向量法可得出关于的方程,即可得出结论.【详解】(1)因为平面,,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、,,,所以,,则,因此,无论取何值,总有;(2),设平面的法向量为,则,取,则,,所以,平面的一个法向量为,易知平面的一个法向量为,由题意可得,整理可得,,此方程无解,因此,不存在点,使得平面与平面所成的角为.22、(1)见解析(2)见解析【解析】(1)由,令,得,或,又的定义域为,讨论两个根及的大小关系,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论