版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省阜阳市界首市2025届高一上数学期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆x2+y2+2x﹣4y+1=0的半径为()A.1 B.C.2 D.42.已知幂函数过点则A.,且在上单调递减B.,且在单调递增C.且在上单调递减D.,且在上单调递增3.点M(1,4)关于直线l:x-y+1=0对称的点的坐标是()A.(4,1) B.(3,2)C.(2,3) D.(-1,6)4.已知函数,下面关于说法正确的个数是()①的图象关于原点对称②的图象关于y轴对称③的值域为④在定义域上单调递减A.1 B.2C.3 D.45.已知全集U={0,1,2}且={2},则集合A的真子集共有A.3个 B.4个C.5个 D.6个6.某流行病调查中心的疾控人员针对该地区某类只在人与人之间相互传染的疾病,通过现场调查与传染源传播途径有关的蛛丝马迹,根据传播链及相关数据,建立了与传染源相关确诊病例人数与传染源感染后至隔离前时长t(单位:天)的模型:.已知甲传染源感染后至隔离前时长为5天,与之相关确诊病例人数为8;乙传染源感染后至隔离前时长为8天,与之相关确诊病例人数为20.若某传染源感染后至隔离前时长为两周,则与之相关确诊病例人数约为()A.44 B.48C.80 D.1257.已知幂函数的图象过点,则下列说法中正确的是()A.的定义域为 B.的值域为C.为偶函数 D.为减函数8.若,则a,b,c的大小关系是()A. B.C. D.9.若正实数满足,(为自然对数的底数),则()A. B.C. D.10.若是第二象限角,则点在()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题:本大题共6小题,每小题5分,共30分。11.当时,函数取得最大值,则_______________12.幂函数,当取不同的正数时,在区间上它们的图像是一族美丽的曲线(如图).设点,连接,线段恰好被其中的两个幂函数的图像三等分,即有.那么_______13.已知,则函数的最大值为___________,最小值为___________.14.已知幂函数的图象关于轴对称,且在上单调递减,则满足的的取值范围为________.15.已知集合A={0,1,2,3,4,5},集合B={1,3,5,7,9},则Venn图中阴影部分表示的集合中元素的个数为________16.已知正数x、y满足x+=4,则xy的最大值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系xOy中,已知圆x2+y2-12x+32=0的圆心为Q,过点P(0,2)且斜率为k的直线l与圆Q相交于不同的两点A,B,记AB的中点为E(Ⅰ)若AB的长等于,求直线l的方程;(Ⅱ)是否存在常数k,使得OE∥PQ?如果存在,求k值;如果不存在,请说明理由18.已知函数为奇函数.(1)求实数a的值;(2)求的值.19.已知函数,.(1)求的最小正周期;(2)求在区间上的最大值和最小值.20.求值:(1)(2)已知,求的值21.(1)计算:,(为自然对数的底数);(2)已知,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】将圆的方程化为标准方程即可得圆的半径.【详解】由圆x2+y2+2x﹣4y+1=0化为标准方程有:,所以圆的半径为2.故选:C【点睛】本题考查圆的一般方程与标准方程的互化,并由此得出圆的半径大小,属于基础题.2、A【解析】由幂函数过点,求出,从而,在上单调递减【详解】幂函数过点,,解得,,在上单调递减故选A.【点睛】本题考查幂函数解析式的求法,并判断其单调性,考查幂函数的性质等基础知识,考查运算求解能力,是基础题.3、B【解析】设出关于直线对称点的坐标,利用中点和斜率的关系列方程组,解方程组求得对称点的坐标.【详解】设关于直线对称点的坐标为,线段的中点坐标为,且在直线上,即①.由于直线的斜率为,所以线段的斜率为②.解由①②组成的方程组得,即关于直线对称点的坐标为.故选:B【点睛】本小题主要考查点关于直线的对称点的坐标的求法,考查方程的思想,属于基础题.4、B【解析】根据函数的奇偶性定义判断为奇函数可得对称性,化简解析式,根据指数函数的性质可得单调性和值域.【详解】因为的定义域为,,即函数为奇函数,所以函数的图象关于原点对称,即①正确,②不正确;因为,由于单调递减,所以单调递增,故④错误;因为,所以,,即函数的值域为,故③正确,即正确的个数为2个,故选:B.【点睛】关键点点睛:理解函数的奇偶性和常见函数单调性简单的判断方式.5、A【解析】,所以集合A的真子集的个数为个,故选A.考点:子集6、D【解析】根据求得,由此求得的值.【详解】依题意得,,,所以.故若某传染源感染后至隔离前时长为两周,则相关确诊病例人数约为125.故选:D7、C【解析】首先求出幂函数解析式,再根据幂函数的性质一一判断即可.【详解】解:因为幂函数的图象过点,所以,所以,所以,定义域为,且,即为偶函数,因为,所以,所以,故A错误,B错误,C正确,又在上单调递减,根据偶函数的对称性可得在上单调递增,故D错误;故选:C8、A【解析】根据题意,以及指数和对数的函数的单调性,来确定a,b,c的大小关系.【详解】解:是增函数,是增函数.,又,【点睛】本题考查三个数的大小的求法,考查指数函数和对数函数性质等基础知识,考查运算求解能力,是基础题.根据题意,构造合适的对数函数和指数函数,利用指数对数函数的单调性判定的范围是关键.9、C【解析】由指数式与对数式互化为相同形式后求解【详解】由题意得:,,,①,又,,,和是方程的根,由于方程的根唯一,,由①知,,故选:C10、D【解析】先分析得到,即得点所在的象限.【详解】因为是第二象限角,所以,所以点在第四象限,故选D【点睛】本题主要考查三角函数的象限符合,意在考查学生对该知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用三角恒等变换化简函数,根据正弦型函数的最值解得,利用诱导公式求解即可.【详解】解析:当时,取得最大值(其中),∴,即,∴故答案为:-3.12、1【解析】求出的坐标,不妨设,,分别过,,分别代入点的坐标,变形可解得结果.【详解】因为,,,所以,,不妨设,,分别过,,则,,则,所以故答案为:113、①.②.【解析】利用对勾函数的单调性直接计算函数的最大值和最小值作答.【详解】因函数在上单调递增,在上单调递减,当时,函数在上单调递增,在上单调递减,即有当时,,而当时,,当时,,则,所以函数的最大值为,最小值为.故答案为:;14、【解析】根据幂函数的单调性和奇偶性得到,代入不等式得到,根据函数的单调性解得答案.【详解】幂函数在上单调递减,故,解得.,故,,.当时,不关于轴对称,舍去;当时,关于轴对称,满足;当时,不关于轴对称,舍去;故,,函数在和上单调递减,故或或,解得或.故答案为:15、3【解析】由集合定义,及交集补集定义即可求得.【详解】由Venn图及集合的运算可知,阴影部分表示的集合为∁又A={0,1,2,3,4,5},B={1,3,5,7,9},∴A∩B={1,3,5},∴即Venn图中阴影部分表示的集合中元素的个数为3故答案为:3.16、8【解析】根据,利用基本不等式即可得出答案.【详解】解:,当且仅当,即时,取等号,所以xy的最大值为8.故答案为:8.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)y=-+2或y=-x+2;(Ⅱ)不存在实数满足题意【解析】(Ⅰ)待定系数法,设出直线,再根据已知条件列式,解出即可;(Ⅱ)假设存在常数,将转化斜率相等,联立直线与圆,根据韦达定理,由直线与圆相交可求得范围.由斜率相等可求得的值,从而可判断结论【详解】(Ⅰ)圆Q的方程可写成(x-6)2+y2=4,所以圆心为Q(6,0)设过P(0,2)且斜率为k的直线方程为y=kx+2∵|AB|=,∴圆心Q到直线l的距离d==,∴=,即22k2+15k+2=0,解得k=-或k=-所以,满足题意的直线l方程为y=-+2或y=-x+2(Ⅱ)将直线l的方程y=x+2代入圆方程得x2+(kx+2)2-12x+32=0整理得(1+k2)x2+4(k-3)x+36=0.①直线与圆交于两个不同的点A,B等价于△=[4(k-3)2]-4×36(1+k2)=42(-8k2-6k)>0,解得-<k<0,即k的取值范围为(-,0)设A(x1,y1),B(x2,y2),则AB的中点E(x0,y0)满足x0==-,y0=kx0+2=∵kPQ==-,kOE==-,要使OE∥PQ,必须使kOE=kPQ=-,解得k=-,但是k∈(-,0),故没有符合题意的常数k【点睛】本题考查了圆的标准方程及弦长计算,还考查了直线与圆相交知识,直线平行知识,中点坐标公式,韦达定理的应用,考查了转化思想,属中档题18、(1)(2)【解析】(1)由奇函数定义求;(2)代入后结合对数恒等式计算【详解】(1)因为函数为奇函数,所以恒成立,可得.(2)由(1)可得.所以.【点睛】本题考查函数的奇偶性,考查对数恒等式,属于基础题19、(1)(2)最大值为,最小值为【解析】(1)利用二倍角公式和两角和正弦公式化简再由周期公式计算可得答案;(2)根据当的范围可得,再计算出可得答案.【小问1详解】,所以的最小正周期.【小问2详解】当时,,所以,所以,所以在区间上的最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 食品安全复习题(附参考答案)
- 基站施工合同范例
- 2025年白山货运资格证考试题库
- 别墅装修装饰设计合同范例
- 数字技术适老化发展报告(2024年)
- 2025年江西货运上岗证模拟考试题
- 台球厅合作合同范例
- 成都租房月租合同范例
- 天府新区航空旅游职业学院《近世代数》2023-2024学年第一学期期末试卷
- 公益文艺演出聘用合同范例
- 塑料模具肥皂盒设计说明书
- 最新X公司事业部建设规划方案
- 十一学校行动纲要
- 穿越河流工程定向钻专项施工方案
- 社会主义新农村建设建筑废料利用探究
- 唯一住房补贴申请书(共2页)
- 《质量守恒定律》评课稿
- 人教版七年级上册地理《第4章居民与聚落 第3节人类的聚居地——聚落》课件
- 数据中心IDC项目建议书
- 中医养生脾胃为先PPT文档
- 《生产计划与控制》课程设计
评论
0/150
提交评论