新疆巴州焉耆县第三中学2025届高一数学第一学期期末调研试题含解析_第1页
新疆巴州焉耆县第三中学2025届高一数学第一学期期末调研试题含解析_第2页
新疆巴州焉耆县第三中学2025届高一数学第一学期期末调研试题含解析_第3页
新疆巴州焉耆县第三中学2025届高一数学第一学期期末调研试题含解析_第4页
新疆巴州焉耆县第三中学2025届高一数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆巴州焉耆县第三中学2025届高一数学第一学期期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若角,则()A. B.C. D.2.已知圆锥的侧面积展开图是一个半圆,则其母线与底面半径之比为A.1 B.C. D.23.已知函数若曲线与直线的交点中,相邻交点的距离的最小值为,则的最小正周期为A. B.C. D.4.直线l1的倾斜角,直线l1⊥l2,则直线l2的斜率为A.- B.C.- D.5.函数的零点个数为()A. B.C. D.6.已知向量满足,,则A.4 B.3C.2 D.07.已知定义域为的函数满足:,且,当时,,则等于()A B.C.2 D.48.函数的最小正周期是()A.π B.2πC.3π D.4π9.若a,b是实数,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件10.抛掷两枚均匀的骰子,记录正面朝上的点数,则下列选项的两个事件中,互斥但不对立的是()A.事件“点数之和为奇数”与事件“点数之和为9”B.事件“点数之和为偶数”与事件“点数之和为奇数”C.事件“点数之和为6”与事件“点数之和为9”D.事件“点数之和不小于9”与事件“点数之和小于等于8”二、填空题:本大题共6小题,每小题5分,共30分。11.水葫芦又名凤眼莲,是一种原产于南美洲亚马逊河流域属于雨久花科,凤眼蓝属的一种漂浮性水生植物,繁殖极快,广泛分布于世界各地,被列入世界百大外来入侵种之一.某池塘中野生水葫芦的面积与时间的函数关系图象如图所示.假设其函数关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积就会超过30m2;③野生水葫芦从4m2蔓延到12m2只需1.5个月;④设野生水葫芦蔓延至2m2、3m2、6m2所需的时间分别为t1、t2、t3,则有t1+t2=t3;⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.其中,正确的是________.(填序号).12.函数f(x)=+的定义域为____________13.设,则________.14.若函数的定义域为,则函数的定义域为______15.已知函数集合,若集合中有3个元素,则实数的取值范围为________16.方程的解在内,则的取值范围是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校高二(5)班在一次数学测验中,全班名学生的数学成绩的频率分布直方图如下,已知分数在分的学生数有14人.(1)求总人数和分数在的人数;(2)利用频率分布直方图,估算该班学生数学成绩的众数和中位数各是多少?(3)现在从分数在分的学生(男女生比例为1:2)中任选2人,求其中至多含有1名男生的概率.18.已知函数,若函数的图象过点,(1)求的值;(2)若,求实数的取值范围;(3)若函数有两个零点,求实数的取值范围.19.某产品在出厂前需要经过质检,质检分为2个过程.第1个过程,将产品交给3位质检员分别进行检验,若3位质检员检验结果均为合格,则产品不需要进行第2个过程,可以出厂;若3位质检员检验结果均为不合格,则产品视为不合格产品,不可以出厂;若只有1位或2位质检员检验结果为合格,则需要进行第2个过程.第2个过程,将产品交给第4位和第5位质检员检验,若这2位质检员检验结果均为合格,则可以出厂,否则视为不合格产品,不可以出厂.设每位质检员检验结果为合格的概率均为,且每位质检员的检验结果相互独立(1)求产品需要进行第2个过程的概率;(2)求产品不可以出厂的概率20.已知函数.(1)判断在区间上的单调性,并用定义证明;(2)判断奇偶性,并求在区间上的值域.21.2022年是苏颂诞辰1001周年,苏颂发明的水运仪象台被誉为世界上最早的天文钟.水运仪象台的原动轮叫枢轮,是一个直径约3.4米的水轮,它转一圈需要30分钟.如图,退水壶内水面位于枢轮中心下方1.19米处,当点P从枢轮最高处随枢轮开始转动时,打开退水壶出水口,壶内水位以每分钟0.017米的速度下降,将枢轮转动视为匀速圆周运动.以枢轮中心为原点,水平线为x轴建立平面直角坐标系,令P点纵坐标为,水面纵坐标为,P点转动经过的时间为x分钟.(参考数据:,,)(1)求,关于x的函数关系式;(2)求P点进入水中所用时间的最小值(单位:分钟,结果取整数)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分母有理化再利用平方关系和商数关系化简得解.【详解】解:.故选:C2、D【解析】圆锥的侧面展开图为扇形,根据扇形的弧长即为圆锥的底面圆的周长可得母线与底面圆半径间的关系【详解】设圆锥的母线长为,底面圆的半径为,由已知可得,所以,所以,即圆锥的母线与底面半径之比为2.故选D【点睛】解答本题时要注意空间图形和平面图形间的转化以及转化过程中的等量关系,解题的关键是根据扇形的弧长等于圆锥底面圆的周长得到等量关系,属于基础题3、D【解析】将函数化简,根据曲线y=f(x)与直线y=1的交点中,相邻交点的距离的最小值为,即ωx2kπ或ωx2kπ,k∈Z,建立关系,可得ω的值,即得f(x)的最小正周期【详解】解:函数f(x)=cosωx+sinωx,ω>0,x∈R化简可得:f(x)sin(ωx)∵曲线y=f(x)与直线y=1的相交,即ωx2kπ或ωx2kπ,k∈Z,∴()+2kπ=ω(x2﹣x1),令k=0,∴x2﹣x1,解得:ω∴y=f(x)的最小正周期T,故选D【点睛】本题考查了和差公式、三角函数的图象与性质、三角函数的方程的解法,考查了推理能力与计算能力,属于中档题4、C【解析】由题意可得L2的倾斜角等于30°+90°=120°,从而得到L2的斜率为tan120°,运算求得结果【详解】如图:直线L1的倾斜角α1=30°,直线L1⊥L2,则L2的倾斜角等于30°+90°=120°,∴L2的斜率为tan120°=﹣tan60°,故选C【点睛】本题主要考查直线的倾斜角和斜率的关系,体现了数形结合的数学思想,属于基础题5、B【解析】当时,令,故,符合;当时,令,故,符合,所以的零点有2个,选B.6、B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因所以选B.点睛:向量加减乘:7、A【解析】根据函数的周期性以及奇偶性,结合已知函数解析式,代值计算即可.【详解】因为函数满足:,且,故是上周期为的偶函数,故,又当时,,则,故.故选:A.8、A【解析】化简得出,即可求出最小正周期.【详解】,最小正周期.故选:A.9、B【解析】由对数函数单调性即可得到二者之间的逻辑关系.【详解】由可得;但是时,不能得到.则是的必要不充分条件故选:B10、C【解析】利用对立事件、互斥事件的定义直接求解【详解】对于,二者能同时发生,不是互斥事件,故错误;对于,二者不能同时发生,也不能同时不发生,是对立事件,故错误;对于,二者不能同时发生,但能同时不发生,是互斥但不对立事件,故正确;对于,二者不能同时发生,也不能同时不发生,是对立事件,故错误故选:二、填空题:本大题共6小题,每小题5分,共30分。11、①②④【解析】设且,根据图像求出,结合计算进而可判断①②③④;根据第1到第3个月、第2到第4个月的面积即可求出对应的平均速度,进而判断⑤.【详解】因为其关系为指数函数,所以可设且,又图像过点,所以.所以指数函数的底数为2,故①正确;当时,,故②正确;当y=4时,;当y=12时,;所以,故③错误;因为,所以,故④正确;第1到第3个月之间的平均速度为:,第2到第4个月之间的平均速度为:,,故⑤错误.故答案为:①②④12、【解析】根据题意,结合限制条件,解指数不等式,即可求解.【详解】根据题意,由,解得且,因此定义域为.故答案为:.13、2【解析】先求出,再求的值即可【详解】解:由题意得,,所以,故答案为:214、【解析】利用的定义域,求出的值域,再求x的取值范围.【详解】的定义域为即的定义域为故答案为:15、或【解析】令,记的两根为,由题知的图象与直线共有三个交点,从而转化为一元二次方程根的分布问题,然后可解.【详解】令,记的零点为,因为集合中有3个元素,所以的图象与直线共有三个交点,则,或或当时,得,,满足题意;当时,得,,满足题意;当时,,解得.综上,t的取值范围为或.故答案为:或16、【解析】先令,按照单调性求出函数的值域,写出的取值范围即可.【详解】令,显然该函数增函数,,值域为,故.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)4;(2)众数和中位数分别是107.5,110;(3)﹒【解析】(1)先求出分数在内的学生的频率,由此能求出该班总人数,再求出分数在内的学生的频率,由此能求出分数在内的人数(2)利用频率分布直方图,能估算该班学生数学成绩的众数和中位数(3)由题意分数在内有学生6名,其中男生有2名.设女生为,,,,男生为,,从6名学生中选出2名,利用列举法能求出其中至多含有1名男生的概率【小问1详解】分数在内的学生的频率为,∴该班总人数为分数在内的学生的频率为:,分数在内的人数为【小问2详解】由频率直方图可知众数是最高的小矩形底边中点的横坐标,即为设中位数为,,众数和中位数分别是107.5,110【小问3详解】由题意分数在内有学生名,其中男生有2名设女生为,,,,男生为,,从6名学生中选出2名的基本事件为:,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,共15种,其中至多有1名男生的基本事件共14种,其中至多含有1名男生的概率为18、(1).(2).(3).【解析】(1)由函数过点,代入函数即可得的值;(2)由可得的取值范围;(3)由函数的大致图象即可得的取值范围.试题解析:(1),,,.(2),,.(3)当时,是减函数,值域为.偶函数,时,是增函数,值域为,函数有两个零点时,.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.本题中在结合函数图象分析得基础上还用到了方程根的分布的有关知识19、(1)(2)【解析】(1)分在第1个过程中,1或2位质检员检验结果为合格两种情况讨论,根据相互独立事件及互斥事件的概率公式计算可得;(2)首先求出在第1个过程中,3位质检员检验结果均为不合格的概率,再求出产品需要进行第2个过程,在第2个过程中,产品不可以出厂的概率,最后根据互斥事件的概率公式计算可得;【小问1详解】解:记事件A为“产品需要进行第2个过程”在第1个过程中,1位质检员检验结果为合格的概率,在第1个过程中,2位质检员检验结果为合格的概率,故【小问2详解】解:记事件B为“产品不可以出厂”在第1个过程中,3位质检员检验结果均为不合格概率,产品需要进行第2个过程,在第2个过程中,产品不可以出厂的概率,故20、(1)函数在区间上单调递增,证明见解析(2)函数为奇函数,在区间上的值域为【解析】(1)利用定义法证明函数单调性;(2)先得到定义域关于原点对称,结合得到函数为奇函数,利用第一问的单调性求出在区间上的值域.【小问1详解】在区间上单调递增,证明如下:,,且,有.因为,,且,所以,.于是,即.故在区间上单调递增.【小问2详解】的定义域为.因,所以为奇函数.由(1)得在区间上单调递增,结合奇偶性可得在区间上单调递增.又因为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论