版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届北京市东城五中高二上数学期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则方程与在同一坐标系内对应的图形编号可能是()A.①④ B.②③C.①② D.③④2.已知圆柱的底面半径是1,高是2,那么该圆柱的侧面积是()A.2 B.C. D.3.以下命题是真命题的是()A.方差和标准差都是刻画样本数据分散程度的统计量B.若m为数据(i=1,2,3,····,2021)的中位数,则C.回归直线可能不经过样本点的中心D.若“”为假命题,则均为假命题4.设正方体的棱长为,则点到平面的距离是()A. B.C. D.5.椭圆:的左焦点为,椭圆上的点与关于坐标原点对称,则的值是()A.3 B.4C.6 D.86.一直线过点,则此直线的倾斜角为()A.45° B.135°C.-45° D.-135°7.在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=,则MN与平面BB1C1C的位置关系是()A.相交 B.平行C.垂直 D.不能确定8.已知点在平面α上,其法向量,则下列点不在平面α上的是()A. B.C. D.9.已知数列为等比数列,若,则的值为()A.-4 B.4C.-2 D.210.若双曲线的一条渐近线方程为.则()A. B.C.2 D.411.甲、乙、丙、丁四人站成一列,要求甲站在最前面,则不同的排法有()A.24种 B.6种C.4种 D.12种12.已知,且,则实数的值为()A. B.3C.4 D.6二、填空题:本题共4小题,每小题5分,共20分。13.设等差数列的前项和为,且,,则__________.14.正四棱锥底面边长和高均为分别是其所在棱的中点,则棱台的体积为___________.15.已知函数的图象与x轴相交于A,B两点,与y轴相交于点C,则的外接圆E的方程是________16.设过点K(-1,0)的直线l与抛物线C:y2=4x交于A、B两点,为抛物线的焦点,若|BF|=2|AF|,则cos∠AFB=_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)立德中学举行冬令营活动期间,对位参加活动的学生进行了文化和体能测试,满分为150分,其测试成绩都在90分和150分之间,成绩在认定为“一般”,成绩在认定为“良好”,成绩在认定为“优秀”.成绩统计人数如下表:体能文化一般良好优秀一般0良好3优秀2例如,表中体能成绩良好且文化成绩一般的学生有2人(1)若从这位参加测试的学生中随机抽取一位,抽到文化或体能优秀的学生概率为.求,的值;(2)在(1)的情况下,从体能成绩优秀的学生中,随机抽取2人,求至少有一个人文化的成绩为优秀的概率;(3)若让使参加体能测试的成绩方差最小,写出的值.(直接写出答案)18.(12分)如图,在三棱锥P-ABC中,△ABC是以AC为底的等腰直角三角形,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且,求平面MAP与平面CAP所成角的大小.19.(12分)在平面直角坐标系中,已知.(1)求直线的方程;(2)平面内的动点满足,到点与点距离的平方和为24,求动点的轨迹方程.20.(12分)已知抛物线E:y2=8x(1)求抛物线的焦点及准线方程;(2)过点P(-1,1)的直线l1与抛物线E只有一个公共点,求直线l1的方程;(3)过点M(2,3)的直线l2与抛物线E交于点A,B.若弦AB的中点为M,求直线l2的方程21.(12分)记为等差数列的前n项和,已知.(1)求的通项公式;(2)求的最小值.22.(10分)已知数列满足(1)证明:数列为等差数列,并求数列的通项公式;(2)设,求数列的前n项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】结合椭圆、双曲线、抛物线的图像,分别对①②③④分析m、n的正负,即可得到答案.【详解】对于①:由双曲线的图像可知:;由抛物线的图像可知:同号,矛盾.故①错误;对于②:由双曲线的图像可知:;由抛物线的图像可知:异号,符合要求.故②成立;对于③:由椭圆的图像可知:;由抛物线的图像可知:同号,且抛物线的焦点在x轴上,符合要求.故③成立;对于④:由椭圆的图像可知:;由抛物线的图像可知:同号,且抛物线的焦点在x轴上,矛盾.故④错误;故选:B2、D【解析】由圆柱的侧面积公式直接可得.【详解】故选:D3、A【解析】A:根据方差和标准差的定义进行判断;B:根据中位数的定义判断;C:根据回归直线必过样本中心点进行判断;D:根据“且”命题真假关系进行判断.【详解】对于A,方差和标准差都是刻画样本数据分散程度的统计量,故A正确;对于B,若为数据,2,3,,的中位数,需先将数据从小到大排列,此时数据里面之间的数顺序可能发生变化,则为排序后的第1010个数据的值,这个数不一定是原来的,故B错误;对于C,回归直线一定经过样本点的中心,,故C错误;对于D,若“”为假命题,则、中至少有一个是假命题,故D错误;故选:A4、D【解析】建立空间直角坐标系,根据空间向量所学点到面的距离公式求解即可.【详解】建立如下图所示空间直角坐标系,以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴.因为正方体的边长为4,所以,,,,,所以,,,设平面的法向量,所以,,即,设,所以,,即,设点到平面的距离为,所以,故选:D.5、D【解析】令椭圆C的右焦点,由已知条件可得四边形为平行四边形,再利用椭圆定义计算作答.【详解】令椭圆C的右焦点,依题意,线段与互相平分,于是得四边形为平行四边形,因此,而椭圆:的长半轴长,所以.故选:D6、A【解析】根据斜率公式求得直线的斜率,得到,即可求解.【详解】设直线的倾斜角为,由斜率公式,可得,即,因为,所以,即此直线的倾斜角为.故选:A.7、B【解析】建立空间直角坐标系,求得平面BB1C1C的法向量和直线MN的方向向量,利用两向量垂直,得到线面平行.【详解】建立如图所示的空间直角坐标系,由图可知平面BB1C1C的法向量.∵A1M=AN=,∴M,N,∴.∵,∴MN∥平面BB1C1C,故选:B.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有利于空间向量判断线面平行,属于简单题目.8、D【解析】根据法向量的定义,利用向量垂直对四个选项一一验证即可.【详解】对于A:记,则.因为,所以点在平面α上对于B:记,则.因为,所以点在平面α上对于C:记,则.因为,所以点在平面α上对于D:记,则.因为,所以点不在平面α上.故选:D9、B【解析】根据,利用等比数列的通项公式求解.【详解】因为,所以,则,解得,所以.故选:B10、C【解析】求出渐近线方程为,列出方程求出.【详解】双曲线的渐近线方程为,因为,所以,所以.故选:C11、B【解析】由已知可得只需对剩下3人全排即可【详解】解:甲、乙、丙、丁四人站成一列,要求甲站在最前面,则只需对剩下3人全排即可,则不同的排法共有,故选:B12、B【解析】根据给定条件利用空间向量垂直的坐标表示计算作答.详解】因,且,则有,解得,所以实数的值为3.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据,利用等差数列前项和公式,列方程求出,再由,能求出【详解】等差数列的前项和为,且,,,解得,,,解得,故答案为:1014、【解析】分别计算,,作差得到答案.【详解】分别是其所在棱的中点,则正四棱锥底面边长和高均为,,,故.故答案为:.15、【解析】由题可求三角形三顶点的坐标,三角形的外接圆的方程即求.【详解】令,得或,则,∴外接圆的圆心的横坐标为2,设,半径为r,由,得,则,即,得,.∴的外接圆的方程为.故答案为:.16、【解析】根据已知设直线方程为与C联立,结合|BF|=2|AF|,利用韦达定理计算可得点A,B的坐标,进而求出向量的坐标,进而利用求向量夹角余弦值的方法,即可得到答案.【详解】令直线的方程为将直线方程代入批物线C:的方程,得令且,所以由抛物线的定义知,由|BF|=2|AF|可知,,则,解得:,,则A,B两点坐标分别为,则则.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2);(3).【解析】(1)由题设可得求参数a,结合表格数据及已知总学生人数求参数b.(2)应用列举法求古典概型的概率.(3)应用表格数据及方差公式可得且,即可确定成绩方差最小对应的值.【小问1详解】设事件:从位学生中随机抽取一位,抽到文化或体能优秀的学生由题意知,体能或文化优秀的学生共有人,则,解得所以;【小问2详解】体能成绩为优秀的学生共有5人,在这5人中,文化成绩一般的人记为;文化成绩良好的人记为;文化成绩优秀的人记为从文化成绩优秀的学生中,随机抽取2人的样本空间,设事件:至少有一个人文化的成绩为优秀,,所以,体能成绩优秀的学生中,随机抽取2人,至少有一个人文化成绩为优秀的概率是;【小问3详解】由题设知:体能测试成绩,{一般,良好,优秀}人数分别为{5,,},对应平均分为{100,120,140},所以体能测试平均成绩,所以,而所以当时最小.18、(1)证明见解析(2)【解析】(1)接BO,由是等边三角形得,由得出,再利用线面垂直的判断定理可得平面;(2)建立以为坐标原点,分别为轴的空间直角坐标系,求出平面的法向量、平面的法向量,利用二面角的向量求法可得答案.【小问1详解】连接BO,由已知△ABC是以AC为底的等腰直角三角形,且PA=PB=PC=AC=4,O为AC的中点,则是等边三角形,,,在中,,满足,即是直角三角形,则,又,平面,所以平面.【小问2详解】建立以为坐标原点,分别为轴的空间直角坐标系如图所示,则,,,,则平面的法向量为,由已知,得到点坐标,,设平面的法向量则,令,则,即,设平面MAP与平面CAP所成角为,则,则平面MAP与平面CAP所成角为.19、(1)(2)【解析】(1)结合点斜式求得直线的方程.(2)设,根据已知条件列方程,化简求得的轨迹方程.【小问1详解】,于是直线的方程为,即【小问2详解】设动点,于是,代入坐标得,化简得,于是动点的轨迹方程为20、(1)焦点为(2,0),准线方程为x=-2;(2)y=1或x-y+2=0或2x+y+1=0;(3)4x-3y+1=0.【解析】(1)根据抛物线的方程及其几何性质,求焦点和准线;(2)分直线l1的斜率为0和不为0两种情况,根据直线与抛物线只有一个公共点,由直线与x轴平行或Δ=0,得解;(3)利用点差法求出直线l2的斜率,即可得直线l2的方程【小问1详解】由题意,p=4,则焦点为(2,0),准线方程为x=-2【小问2详解】当直线l1的斜率为0时,y=1;当直线l1的斜率不为0时,设直线l1为x+1=m(y-1),联立,得y2-8my+8m+8=0,因为直线l1与抛物线E只有一个公共点,所以Δ=64m2-4(8m+8)=0,解得m=1或,所以直线l1的方程为x-y+2=0或2x+y+1=0,综上,直线l1为y=1或x-y+2=0或2x+y+1=0【小问3详解】由题意,直线l2的斜率一定存在,设其斜率为k,A(x1,y1),B(x2,y2),则8x1,8x2,两式作差得:8(x1-x2),即k,所以直线l2为y-3(x-2),即4x-3y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全面建筑材料采购合同样式
- 一次性购销合同的解除权条件
- 军事采购合同模板
- 科技服务合同的履行与监管
- 内墙涂装工程劳务分包合同
- 短途搬家装卸运输合同范本
- 2024楼宇电视广告合同
- 2024店铺店面装修合同范本
- 低温仓储与商品运输时效分析考核试卷
- 智能电子音箱的智能语音识别与播放考核试卷
- GB/T 25420-2021驱动耙
- 特应性皮炎积分指数AD 病情严重程度积分法(SCORAD)
- GB/T 19520.1-2007电子设备机械结构482.6mm(19in)系列机械结构尺寸第1部分:面板和机架
- GB/T 16762-2020一般用途钢丝绳吊索特性和技术条件
- 2023年北京市昌平区广播电视台(融媒体中心)招聘笔试题库及答案解析
- 主要耗能设备管理台账
- 2018年木地板公司组织架构及部门职能
- 露天矿山开采课件
- 语篇的衔接和连贯课件
- 蒋介石-教学讲解课件
- 《中级财务会计(二)》作业册形成性考核册国家开放大学电大
评论
0/150
提交评论