下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
相似模型巩固练习1. 如图,某学习小组为了测量校园内一棵小树的高度CD,用长为1m的竹竿AB作测量工具,移动竹竿,使竹竿影子的顶端、树影子的顶端落在水平地面上的同一点E,且点E,A,C在同一直线上.已知EA=3m,AC=9m,求这棵树的高度CD.2. 如图所示,小红想利用竹竿来测量旗杆AB的高度,在某一时刻测得1米长的竹竿竖直放置时影长2米,在同时刻测量旗杆的影长时,旗杆的影子一部分落在地面上(BC),另一部分落在斜坡上(CD),他测得落在地面上的影长为10米,落在斜坡上的影长为42米,∠DCE=45°,求旗杆AB的高度?3. 如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,DE=40cm,测得边DF离地面的高度AC=1.5m,CD=12m,求树高AB.4. 如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?5. 如图,高高的路灯挂在学校操场旁边上方,高傲而明亮.王刚同学拿起一根2m长的竹竿去测量路灯的高度,他走到路灯旁的一个地方,点A竖起竹竿(AE表示),这时他量了一下竹竿的影长AC正好是1m,他沿着影子的方向走,向远处走出两个竹竿的长度(即4m)到点B,他又竖起竹竿(BF表示),这时竹竿的影长BD正好是一根竹竿的长度(即2m),请你计算路灯的高度.6. 雨后的一天晚上,小明和小亮想利用自己所学的有关《测量物体的高度》的知识,测量路灯的高度AB.如图所示,当小明直立在点C处时,小亮测得小明的影子CE的长为5米;此时小明恰好在他前方2米的点F处的小水潭中看到了路灯点A的影子.已知小明的身高为1.8米,请你利用以上的数据求出路灯的高度AB.7. △ABC是一块直角三角形余料,∠C=90°,AC=8cm,BC=6cm,如图将它加工成正方形零件,试说明哪种方法利用率高?(得到的正方形的面积较大)8. 如图,小明用自制的直角三角形纸板DEF测量树的高度AB.他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上已知纸板的两条直角边DE=40cm,EF=30cm,测得AM=10m,边DF离地面的高度DM=1.5m,求树高AB.9. 在一个阳光明媚的上午,某实验中学课外实验小组的同学利用所学知识测量校园内球体景观灯灯罩的半径,小周和他所在的小组计划借助影长进行测量,小周先在地面上立了一根0.4米长的标杆AB,并测得其影长AC为0.3米,同一时刻在阳光照射下,小周再测景观灯(NG)的影长GH为1.8米,然后小组其他成员测得景观灯KG的高度为2.3米(记灯罩顶端为K).已知此时太阳光所在直线NH与灯罩所在⊙O相切于点M.请根据以上数据,计算灯罩的半径.10.如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高是1.5米,求路灯AB的高度.11.已知不等臂跷跷板AB长为3米.跷跷板AB的支撑点O到地面的点H的距离OH=0.6米.当跷跷板AB的一个端点A碰到地面时(如图1),AB与直线AH的夹角∠OAH的度数为30°.(1)当AB的另一个端点B碰到地面时(如图2),跷跷板AB与直线BH的夹角∠ABH的正弦值是多少?(2)当AB的另一个端点B碰到地面时(如图2),点A到直线BH的距离是多少米?12.如图,在阳光下,某一时刻,旗杆AB的影子一部分在地面上,另一部分在建筑物的墙面上.小明测得旗杆AB在地面上的影长BC为20m,在墙面上的影长CD为4m,同一时刻,小明又测得竖立于地面长1m的标杆的影长为0.8m,求旗杆AB的高度,13.李师傅用镜子测量一棵古树的高,但树旁有一条小河,不便测量镜子与树之间的距离,于是他两次利用镜子,第一次把镜子放在C点(如图所示),人在F点正好在镜中看到树尖A;第二次他把镜子放在C′处,人在F′处正好看到树尖A.已知李师傅眼睛距地面的高度为1.7m,量得CC′为12m,CF为1.8m,C′F′为3.84m,求树高.14.光污染是继废气、废水、废渣和噪声等污染之后的一种新的环境污染源,主要包括白亮污染、人工白昼污染和彩光污染,如图,小明家正对面的高楼外墙上安装着一幅巨型广告宣传牌AB,小明想要测量窗外的广告宣传牌AB的高度,他发现晚上家里熄灯后对面楼上的广告宣传牌从A处发出的光恰好从窗户的最高点C处射进房间落在地板上F处,从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园园长个人工作计划
- 中学生自我评价15篇
- 爱岗敬业演讲稿范文集锦6篇
- 大一新生自我鉴定15篇
- 学期班务工作计划
- 初中生新学期开学典礼演讲稿合集6篇
- 大学课前三分钟演讲稿(合集15篇)
- 《广告经典案例》课件
- 幼儿园大班老师的综合教育笔记合集6篇
- 金钱的诗句李白
- 北师大版九年级数学下册《圆的对称性》评课稿
- 《遥感原理与应用》期末考试试卷附答案
- 工程分包管理制度
- GB/T 9452-2023热处理炉有效加热区测定方法
- 肺炎支原体肺炎诊治专家共识
- 药物化学(第七版)(全套课件1364P)
- 中国近现代史人物陈独秀
- 建筑师《建筑工程经济》习题(E)
- 全过程工程造价跟踪审计服务方案
- YS/T 937-2013镍铂靶材
- GB/T 700-1988碳素结构钢
评论
0/150
提交评论