专题01 全等模型-倍长中线与截长补短(解析版)_第1页
专题01 全等模型-倍长中线与截长补短(解析版)_第2页
专题01 全等模型-倍长中线与截长补短(解析版)_第3页
专题01 全等模型-倍长中线与截长补短(解析版)_第4页
专题01 全等模型-倍长中线与截长补短(解析版)_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题01全等模型-倍长中线与截长补短全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(倍长中线模型、截长补短模型)进行梳理及对应试题分析,方便掌握。模型1.倍长中线模型【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。【常见模型及证法】1、基本型:如图1,在三角形ABC中,AD为BC边上的中线.证明思路:延长AD至点E,使得AD=DE.若连结BE,则;若连结EC,则;2、中点型:如图2,为的中点.证明思路:若延长至点,使得,连结,则;若延长至点,使得,连结,则.3、中点+平行线型:如图3,,点为线段的中点.证明思路:延长交于点(或交延长线于点),则.例1.(2022·山东烟台·一模)(1)方法呈现:如图①:在中,若,,点D为BC边的中点,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使,再连接BE,可证,从而把AB、AC,集中在中,利用三角形三边的关系即可判断中线AD的取值范围是_______________,这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图②,在中,点D是BC的中点,于点D,DE交AB于点E,DF交AC于点F,连接EF,判断与EF的大小关系并证明;(3)问题拓展:如图③,在四边形ABCD中,,AF与DC的延长线交于点F、点E是BC的中点,若AE是的角平分线.试探究线段AB,AF,CF之间的数量关系,并加以证明.【答案】(1)1<AD<5,(2)BE+CF>EF,证明见解析;(3)AF+CF=AB,证明见解析.【分析】(1)由已知得出AC﹣CE<AE<AC+CE,即5﹣4<AE<5+3,据此可得答案;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)如图③,延长AE,DF交于点G,根据平行和角平分线可证AF=FG,易证△ABE≌△GEC,据此知AB=CG,继而得出答案.【详解】解:(1)延长AD至E,使DE=AD,连接BE,如图①所示,∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,∵,∴△BDE≌△CDA(SAS),∴BE=AC=4,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴6﹣4<AE<6+4,即2<AE<10,∴1<AD<5;故答案为:1<AD<5,(2)BE+CF>EF;证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示.同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)AF+CF=AB.如图③,延长AE,DF交于点G,∵AB∥CD,∴∠BAG=∠G,在△ABE和△GCE中

CE=BE,∠BAG=∠G,∠AEB=∠GEC,∴△ABE≌△GEC(AAS),∴CG=AB,∵AE是∠BAF的平分线,∴∠BAG=∠GAF,∴∠FAG=∠G,∴AF=GF,∵FG+CF=CG,∴AF+CF=AB.【点睛】此题是三角形综合题,主要考查了三角形的三边关系、全等三角形的判定与性质、角的关系等知识;本题综合性强,有一定难度,通过作辅助线证明三角形全等是解决问题的关键.例2.(2022·河北·中考模拟)倍长中线的思想在丁倍长某条线段(被延长的线段要满足两个条件:线段一个端点是图中一条线段的中点;线段与这条线段不共线),然后进行连接,构造三角形全等,再进一步将某些线段进行等量代换,再证明全等或其他的结论,从而解决问题.【应用举例】如图(1),已知:为的中线,求证:.简证:如图(2),延长到,使得,连接,易证,得,在中,,.【问题解决】(1)如图(3),在中,是边上的中线,是上一点,且,延长交于,求证:.(2)如图(4),在中,是边的中点,分别在边上,,若,求的长.(3)如图(5),是的中线,,且,请直接写出与的数量关系_及位置关系_.【答案】;(1)详见解析;(2)5;(3),【分析】【应用举例】由全等的性质可得AB=EC,由三角形三边关系可得AC+CE>AE,即AB+AC>2AD;故答案为EC,AE;【问题解决】(1)由题意不难得到所以∠BGD=∠BED=∠AEF=∠DAC,∴有AF=EF;(2)延长ED到G,使DG=ED,连结CG、FG,不难得到EF=FG,另同(1)有△BDE≌△CDG,所以∠FCG=∠FCD+∠GCD=∠FCD+∠EBD=90°,CG=BE=3,由勾股定理可得FG即EF的长;(3)由全等三角形的性质可以得到解答.【详解】【应用举例】【问题解决】如图延长到,使得连接易证得,.如图,延长到,使得连接易证得,垂直平分即在中,,,理由如下:如图3,延长AD到G,使AD=DG,延长DA交EF于P,连结BG,则不难得到△BGD≌△CAD,∴BG=AC,∠GBD=∠ACD,∠DGB=∠DAC,又AF=AC,∴BG=AF,∴∠ABG=∠ABD+∠GBD=∠ABD+∠ACD=180°-∠BAC=∠EAF,∴在△ABG和△EAF中,,∴△ABG≌△EAF,∴EF=AG=2AD,∠EFA=∠DGB=∠DAC,∵∠DAC+∠PAF=180°-∠FAC=180°-90°=90°,∴∠EFA+∠PAF=90°,∴∠APF=90°,∴EF⊥AD.【点睛】本题考查全等三角形的综合运用,熟练掌握全等三角形的判定和性质是解题关键.例3.(2022·贵州毕节·二模)课外兴趣小组活动时,老师提出了如下问题:(1)如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考帮小明完成解答过程.(2)如图2,AD是△ABC的中线,BE交AC干E,交AD于F,且AE=EF.请判昕AC与BF的数量关系,并说明理由.【答案】(1)见解析(2)AC=BF,理由见解析【解析】(1)解:如图,延长AD到点E,使DE=AD,连接BE,在△ADC和△EDB中∵,∴△ADC≌△EDB(SAS).∴BE=AC=3.∵AB-BE<AE<AB+BE∵2<AE<8.∵AE=2AD∴1<AD<4.(2)AC=BF,理由如下:延长AD至点G,使GD=AD,连接BG,在△ADC和△GDB中,,∴△ADC≌△GDB(SAS).∴BG=AC,∠G=∠DAC..∵AE=EF∴∠AFE=∠FAE.∴∠DAC=∠AFE=∠BFG∴∠G=∠BFG∴BG=BF∴AC=BF.【点睛】本题考查全等三角形判定与性质,三角形三边的关系,作辅助线:延长AD到点E,使DE=AD,构造全等三角形是解题的关键.例4.(2022·山东·安丘市一模)阅读材料:如图1,在中,D,E分别是边AB,AC的中点,小亮在证明“三角形的中位线平行于第三边,且等于第三边的一半”时,通过延长DE到点F,使,连接CF,证明,再证四边形DBCF是平行四边形即得证.类比迁移:(1)如图2,AD是的中线,E是AC上的一点,BE交AD于点F,且,求证:.小亮发现可以类比材料中的思路进行证明.证明:如图2,延长AD至点M,使,连接MC,……请根据小亮的思路完成证明过程.方法运用:(2)如图3,在等边中,D是射线BC上一动点(点D在点C的右侧),连接AD.把线段CD绕点D逆时针旋转120°得到线段DE,F是线段BE的中点,连接DF、CF.请你判断线段DF与AD的数量关系,并给出证明.【答案】(1)证明见解析;(2),证明见解析【分析】(1)延长AD至M,使,连接MC,证明,结合等角对等边证明即可.(2)延长DF至点M,使,连接BM、AM,证明,△ABM是等边三角形,代换后得证.【详解】(1)证明:延长AD至M,使,连接MC.在和中,,∴,∴,,∵,∴,∵,∴,∴,∴.(2)线段DF与AD的数量关系为:.证明如下:延长DF至点M,使,连接BM、AM,如图2所示:∵点F为BE的中点,∴在和中,∵,∴∴,,∴∵线段CD绕点D逆时针旋转120°得到线段DE∴,,∴∵是等边三角形∵,,∴∵,∴在和中,∵,∴∴,,∴∴是等边三角形,∴.【点睛】本题考查了等边三角形的判定和性质,三角形全等的判定和性质,熟练掌握等边三角形的判定和性质,三角形全等的判定和性质是解题的关键.模型2.截长补短模型【模型解读】截长补短的方法适用于求证线段的和差倍分关系。该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程,截长补短法(往往需证2次全等)。截长:指在长线段中截取一段等于已知线段;补短:指将短线段延长,延长部分等于已知线段。【常见模型及证法】(1)截长:在较长线段上截取一段等于某一短线段,再证剩下的那一段等于另一短线段。例:如图,求证BE+DC=AD方法:=1\*GB3①在AD上取一点F,使得AF=BE,证DF=DC;=2\*GB3②在AD上取一点F,使DF=DC,证AF=BE(2)补短:将短线段延长,证与长线段相等例:如图,求证BE+DC=AD方法:=1\*GB3①延长DC至点M处,使CM=BE,证DM=AD;=2\*GB3②延长DC至点M处,使DM=AD,证CM=BE例1.(2022秋·浙江·八年级专题练习)如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.【答案】证明见解析【分析】如图,在上截取证明再证明可得从而可得结论.【详解】证明:如图,在上截取平分平分【点睛】本题考查的是全等三角形的判定与性质,掌握“利用截长补短的方法证明两条线段的和等于另一条线段”是解题的关键.例2.(2022秋·全国·八年级专题练习)如图,在中,,平分.(1)如图1,若,求证:;(2)如图2,若,求的度数;(3)如图3,若,求证:.【答案】(1)见详解;(2)108°;(3)见详解【分析】(1)如图1,过D作DM⊥AB于M,由CA=CB,,得是等腰直角三角形,根据角平分线的性质得到CD=MD,∠ABC=45°,根据全等三角形的性质得到AC=AM,于是得到结论;(2)如图2,设∠ACB=α,则∠CAB=∠CBA=90°−α,在AB上截取AK=AC,连结DK,根据角平分线的定义得到∠CAD=∠KAD,根据全等三角形的性质得到∠ACD=∠AKD=α,根据三角形的内角和即可得到结论;(3)如图3,在AB上截取AH=AD,连接DH,根据等腰三角形的性质得到∠CAB=∠CBA=40°,根据角平分线的定义得到∠HAD=∠CAD=20°,求得∠ADH=∠AHD=80°,在AB上截取AK=AC,连接DK,根据全等三角形的性质得到∠ACB=∠AKD=100°,CD=DK,根据等腰三角形的性质得到DH=BH,于是得到结论.【详解】(1)如图1,过D作DM⊥AB于M,∴在中,,∴∠ABC=45°,∵∠ACB=90°,AD是角平分线,∴CD=MD,∴∠BDM=∠ABC=45°,∴BM=DM,∴BM=CD,在RT△ADC和RT△ADM中,,∴RT△ADC≌RT△ADM(HL),∴AC=AM,∴AB=AM+BM=AC+CD,即AB=AC+CD;(2)设∠ACB=α,则∠CAB=∠CBA=90°−α,在AB上截取AK=AC,连结DK,如图2,∵AB=AC+BD,AB=AK+BK∴BK=BD,∵AD是角平分线,∴∠CAD=∠KAD,在△CAD和△KAD中,∴△CAD≌△KAD(SAS),∴∠ACD=∠AKD=α,∴∠BKD=180°−α,∵BK=BD,∴∠BDK=180°−α,∴在△BDK中,180°−α+180°−α+90°−α=180°,∴α=108°,∴∠ACB=108°;(3)如图3,在AB上截取AH=AD,连接DH,∵∠ACB=100°,AC=BC,∴∠CAB=∠CBA=40°,∵AD是角平分线,∴∠HAD=∠CAD=20°,∴∠ADH=∠AHD=80°,在AB上截取AK=AC,连接DK,由(1)得,△CAD≌△KAD,∴∠ACB=∠AKD=100°,CD=DK,∴∠DKH=80°=∠DHK,∴DK=DH=CD,∵∠CBA=40°,∴∠BDH=∠DHK-∠CBA=40°,∴DH=BH,∴BH=CD,∵AB=AH+BH,∴AB=AD+CD.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的定义,三角形的内角和,正确的作出辅助线是解题的关键.例3.(2023春·江苏·八年级专题练习)如图,在锐角中,,点D,E分别是边上一动点,连接BE交直线于点F.(1)如图1,若,且,求的度数;(2)如图2,若,且,在平面内将线段绕点C顺时针方向旋转60°得到线段,连接,点N是的中点,连接.在点D,E运动过程中,猜想线段之间存在的数量关系,并证明你的猜想.【答案】(1)(2),理由见解析【分析】(1)如图1中,在射线上取一点K,使得,证明,推出,再证明,可得结论;(2)结论:.首先证明.如图2中,延长到Q,使得,连接,证明,推出,延长到P,使得,则是等边三角形,再证明,推出,,推出是等边三角形,可得结论【详解】(1)解:如图1中,在射线上取一点K,使得,在和中,,∴,∴,∵,∴,∴,∵,∴,∴,∵,∴,∴.(2)结论:.理由:如图2中,∵,∴是等边三角形,∴,∵,∴,∴,∴,∴,如图2中,延长到Q,使得,连接,∵,∴,∴,,∴,∴.延长到,使得,∵,∴是等边三角形,∴,∴,∵,∴,∴,∴是等边三角形,∴.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题.例4.(2022秋·全国·八年级期末)(1)阅读理解:问题:如图1,在四边形中,对角线平分,.求证:.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在上截取,连接,得到全等三角形,进而解决问题;方法2:延长到点,使得,连接,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段,,之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形中,,,过点D作,垂足为点E,请直接写出线段、、之间的数量关系.【答案】(1)证明见解析;(2);理由见解析;(3).【分析】(1)方法1:在上截取,连接,得到全等三角形,进而解决问题;方法2:延长到点,使得,连接,得到全等三角形,进而解决问题;(2)延长到点,使,连接,证明,可得,即(3)连接,过点作于,证明,,进而根据即可得出结论.【详解】解:(1)方法1:在上截,连接,如图.平分,.在和中,,,,.,..,.方法2:延长到点,使得,连接,如图.平分,.在和中,,.,.,.,,.(2)、、之间的数量关系为:.(或者:,).延长到点,使,连接,如图2所示.由(1)可知,.为等边三角形.,.,..,为等边三角形.,.,,即.在和中,,.,,.(3),,之间的数量关系为:.(或者:,)解:连接,过点作于,如图3所示.,..在和中,,,,.在和中,,.,,.【点睛】本题考查了三角形全等的性质与判定,正确的添加辅助线是解题的关键.课后专项训练:1.(2022·浙江湖州·二模)如图,在四边形中,,,,,,点是的中点,则的长为(

).A.2 B. C. D.3【答案】C【分析】延长BE交CD延长线于P,可证△AEB≌△CEP,求出DP,根据勾股定理求出BP的长,从而求出BM的长.【详解】解:延长BE交CD延长线于P,∵AB∥CD,∴∠EAB=∠ECP,在△AEB和△CEP中,∴△AEB≌△CEP(ASA)∴BE=PE,CP=AB=5又∵CD=3,∴PD=2,∵∴∴BE=BP=.故选:C.【点睛】考查了全等三角形的判定和性质和勾股定理,解题的关键是得恰当作辅助线构造全等,依据勾股定理求出BP.2.(2023·江苏·八年级假期作业)如图,在四边形ABCD中,∠DAB=∠BCD=90°,AB=AD,若这个四边形的面积是4,则BC+CD等于()A.2 B.4 C.2 D.4【答案】B【分析】延长CB到点E,使BE=DC,连接AE,AC,可以证明△ADC≌△ABE,可得△EAC是等腰直角三角形,再根据△EAC的面积等于四边形的面积是4,可得EC的长,进而可得结论.【详解】解:如图,延长CB到点E,使BE=DC,连接AE,AC,∵∠DAB=∠BCD=90°,∴∠D+∠ABC=180°,∵∠ABE+∠ABC=180°,∴∠D=∠ABE,在△ADC和△ABE中,,∴△ADC≌△ABE(SAS),∴AC=AE,∠DAC=∠BAE,S△AEC=S四边形ABCD,∵∠DAC+∠CAB=90°,∴∠BAE+∠CAB=90°,∴∠EAC=90°,∴△EAC是等腰直角三角形,∵,∴AE=,∴EC=4,∴BC+CD=BC+BE=EC=4.故选:B.【点睛】本题考查了全等三角形的判定与性质、面积及等积变换、三角形面积公式、勾股定理,解题的关键是综合运用以上知识.3.(2023·江苏·八年级假期作业)如图,与有一条公共边AC,且AB=AD,∠ACB=∠ACD=x,则∠BAD=________.(用含有x的代数式表示)【答案】180°-2x【分析】在CD上截取CE=CB,证明△ABC≌△AEC得AE=AB,∠B=∠AEC,可进一步证明∠D+∠B=180°,再根据四边形内角和定理可得结论.【详解】解:在CD上截取CE=CB,如图所示,在△ABC和△AEC中,∴△ABC≌△AEC(SAS)∴AE=AB,∠B=∠AEC,∵AB=AD,∴AD=AE,∴∠D=∠AED,∵∠AED+∠AEC=180°,∴∠D+∠B=180°,∵∠DAB+∠ABC+∠BCD+∠CDA=360°∴∠DAB+∠BCD=360°-∠ABC-∠CDA=360°-180°=180°,∵∠BCD=∠ACB+∠ACD=x+x=2x∴∠DAB=180°-∠BCD=180°-2x故答案为:180°-2x【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质以及四边形的内角和等知识,作辅助线构造全等三角形是解答此题的难点.4.(2022秋·浙江·八年级专题练习)如图所示,已知AC平分∠BAD,,于点E,判断AB、AD与BE之间有怎样的等量关系,并证明.【答案】,证明见解析【分析】在AB上截取EF,使EF=BE,联结CF.证明,得到,又证明,得到,最后结论可证了.【详解】证明:在AB上截取EF,使EF=BE,联结CF.

在和

AC平分∠BAD在和中【点睛】本题考查三角形全等知识的综合应用,关键在于寻找全等的条件,作适当的辅助线加以证明.5.(2022·安徽淮南·八年级期中)利用角平分线构造“全等模型”解决问题,事半动倍.(1)尺规作图:作的平分线.【模型构造】(2)填空:①如图.在中,,是的角平分线,则______.(填“”、“”或“”)方法一:巧翻折,造全等在上截取,连接,则.②如图,在四边形中,,,和的平分线,交于点.若,则点到的距离是______.方法二:构距离,造全等过点作,垂足为点,则.【模型应用】(3)如图,在中,,,是的两条角平分线,且,交于点.①请直接写出______;②试猜想与之间的数量关系,并说明理由.【答案】(1)见解析;(2)①;②6;(3)①120°;②,理由见解析.【分析】(1)直接利用角平分线的作法作图即可;(2)①根据三角形的性质:大边对大角即可解答;②如图:过点作,垂足为点,利用角平分线的性质证得BE=EF=EC,即E为BC的中点,进而求得EF的长即可;(3)①利用角平分线的定义和三角形内角和即可解答;②在上截取,连接;再证明得到,;再证明,最后利用全等三角形的性质即可解答.【详解】解:(1)如图所示(2)①∵∴大于;故答案为;②如图:过点作,垂足为点,∵和的平分线,交于点∴BE=EF=EC,即BE=BC=6∴EF=6,即点到的距离是6故答案为6;(3)①∵∠A=60°∴∠ABC+∠ACB=180°-60°=120°∵,是的两条角平分线,且,交于点.∴∠CBE+∠BCF==60°∴180°-∠CBE+∠BCF=120°;②,理由如下:在上截取,连接,则,∴,,由①知:,∴,∴,∴,又∵,∴,∵是的角平分线,∴,∵,∴,∴,∴..【点睛】本题主要考查了角平分线的作法、性质定理以及全等三角形的判定与性质,灵活运用相关知识成为解答本题的关键.6.(2022·河南·模拟预测)(1)如图①,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,探究图中线段BE、EF、FD之间的数量关系.某同学做了如下探究,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应该是______.(2)如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且∠EAF=∠BAD,上述结论是否依然成立?若成立,请说明理由;若不成立,写出正确的结论,并说明理由.(3)如图③,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/时的速度前进,舰艇乙沿北偏东50°的方向以80海里/时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【答案】(1)EF=BE+DF;(2)结论EF=BE+DF仍然成立;理由见解析;(3)此时两舰艇之间的距离是210海里【分析】(1)根据题意证明△ABE≌△ADG,△AEF≌△AGF,可得EF=FG,根据FG=DG+DF=BE+DF,可得EF=BE+DF;(2)延长FD到点G.使DG=BE.连结AG,同(1)的方法证明即可;(3)连接EF,延长AE、BF相交于点C,应用(2)的结论可得EF=AE+BF进而气得的长,即两舰艇之间的距离【详解】(1)EF=BE+DF,证明如下:在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为EF=BE+DF.(2)结论EF=BE+DF仍然成立;理由:延长FD到点G.使DG=BE.连结AG,如图②,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)如图③,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°-70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°-30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.【点睛】本题考查全等三角形的性质与判定,方位角的计算,掌握全等三角形的性质与判定是解题的关键.7.(2022·河南·许昌市九年级期中)课外兴趣小组活动时,老师提出了如下问题:如图1,在△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.【感悟】解题时,条件中若出现中点、中线字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.【解决问题】受到(1)的启发,请你证明下列命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.(1)求证:BE+CF>EF,(2)若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明.、【答案】(1)见解析;(2),见解析【分析】(1)延长FD到G,使得DG=DF,连接BG、EG.(或把△CFD绕点D逆时针旋转180°得到△BGD),利用三角形的三边关系即可解决问题;(2)若∠A=90°,则∠EBC+∠FCB=90°,在Rt△EBG中,根据BE2+BG2=EG2,即可解决问题;【详解】解:(1)延长FD到G,使得DG=DF,连接BG、EG.(或把△CFD绕点D逆时针旋转180°得到△BGD),∴CF=BG,DF=DG,∵DE⊥DF,∴EF=EG.在△BEG中,BE+BG>EG,即BE+CF>EF.(2)若∠A=90°,则∠EBC+∠FCB=90°,由(1)知∠FCD=∠DBG,EF=EG,∴∠EBC+∠DBG=90°,即∠EBG=90°,∴在Rt△EBG中,BE2+BG2=EG2,∴BE2+CF2=EF2;【点睛】本题考查了旋转的性质、全等三角形的判定和性质、三角形的三边关系、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.8.(2022·江苏镇江·八年级阶段练习)我们规定:有两组边相等,且它们所夹的角互补的两个三角形叫兄弟三角形.如图,OA=OB,OC=OD,∠AOB=∠COD=90°,回答下列问题:(1)求证:△OAC和△OBD是兄弟三角形.(2)“取BD的中点P,连接OP,试说明AC=2OP.”聪明的小王同学根据所要求的结论,想起了老师上课讲的“中线倍长”的辅助线构造方法,解决了这个问题,按照这个思路回答下列问题.①请在图中通过作辅助线构造△BPE≌△DPO,并证明BE=OD;②求证:AC=2OP.【答案】(1)见解析(2)①见解析;②见解析【分析】(1)证出∠AOC+∠BOD=180°,由兄弟三角形的定义可得出结论;(2)①延长OP至E,使PE=OP,证明△BPE≌△DPO(SAS),由全等三角形的性质得出BE=OD;②证明△EBO≌△COA(SAS),由全等三角形的性质得出OE=AC,则可得出结论.(1)证明:∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=360°-∠AOB-∠COD=360°-90°-90°=180°,又∵AO=OB,OC=OD,∴△OAC和△OBD是兄弟三角形;(2)①证明:延长OP至E,使PE=OP,∵P为BD的中点,∴BP=PD,又∵∠BPE=∠DPO,PE=OP,∴△BPE≌△DPO(SAS),∴BE=OD;②证明:∵△BPE≌△DPO,∴∠E=∠DOP,∴BEOD,∴∠EBO+∠BOD=180°,又∵∠BOD+∠AOC=180°,∴∠EBO=∠AOC,∵BE=OD,OD=OC,∴BE=OC,又∵OB=OA,∴△EBO≌△COA(SAS),∴OE=AC,又∵OE=2OP,∴AC=2OP.【点睛】本题是三角形综合题,考查了新定义兄弟三角形,全等三角形的判定与性质,正确作出辅助线是解题的关键.9.(2022·全国·八年级专题练习)如图1,在中,是边的中线,交延长线于点,.(1)求证;(2)如图2,平分交于点,交于点,若,,求的值.【答案】(1)见解析;(2)【分析】(1)延长至点,使,可证,由全等三角形的性质从而得出,根据题目已知,可证,由全等三角形的性质从而得出,等量代换即可得出答案;(2)如图所示,作,可证,由全等三角形的性质相等角从而得出,进而得出,故可证等量转化即可求出的值.【详解】(1)如图1所示,延长至点,使,在与中,,,,,,在与中,,,,;(2)如图所示,,,平分,,,,,,作,在与中,,,,,在与中,,,,,,设,,,.【点睛】本题考查全等三角形的综合应用,掌握全等三角形的判定与性质是解题的关键.10.(2022·山东东营·中考真题)已知点O是线段AB的中点,点P是直线l上的任意一点,分别过点A和点B作直线l的垂线,垂足分别为点C和点D.我们定义垂足与中点之间的距离为“足中距”.(1)[猜想验证]如图1,当点P与点O重合时,请你猜想、验证后直接写出“足中距”OC和OD的数量关系是________.(2)[探究证明]如图2,当点P是线段AB上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由.(3)[拓展延伸]如图3,当点P是线段BA延长线上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由;【答案】(1);(2)仍然成立,证明见解析;(3)①仍然成立,证明见解析;②【分析】(1)根据三角形全等可得;(2)方法一:过点O作直线,交BD于点F,延长AC交EF于点E,证明即可,方法二:延长CO交BD于点E,证明即可;(3)方法一:过点O作直线,交BD于点F,延长CA交EF于点E,证明,方法二:延长CO交DB的延长线于点E,证明;【详解】(1)O是线段AB的中点在和中(2)数量关系依然成立.证明(方法一):过点O作直线,交BD于点F,延长AC交EF于点E.∵∴∴四边形CEFD为矩形∴,由(1)知,∴,∴.证明(方法二):延长CO交BD于点E,∵,,∴,∴,∵点O为AB的中点∴,又∵,∴,∴,∵,∴.(3)数量关系依然成立.证明(方法一):过点O作直线,交BD于点F,延长CA交EF于点E.∵∴∴四边形CEFD为矩形.∴,由(1)知,∴,∴.10分证明(方法二):延长CO交DB的延长线于点E,∵,,∴,∴,∴点O为AB的中点,∴,又∵,∴,∴,∵,∴.【点睛】此题主要考查了三角形全等的性质与判定,直角三角形的性质,根据题意找到全等的三角形,证明线段相等,是解题的关键.11.(2023·全国·八年级假期作业)如图,四边形中,,,,M、N分别为AB、AD上的动点,且.求证:.【答案】见解析【分析】延长至点,使得,连接,根据同角的补角相等得,根据证明,则,进而证明,根据证明,得到,则.【详解】证明:延长至点,使得,连接,四边形中,,,,在和中,,,,,,,,,在和中,,,.【点睛】本题主要考查了全等三角形的判定与性质,作辅助线构造全等三角形是解决问题的关键.12.(2022秋·浙江·八年级专题练习)如图,已知:在中,,、是的角平分线,交于点O求证:.【答案】见解析【分析】在AC上取一点H,使AH=AE,根据角平分线的定义可得∠EAO=∠HAO,然后利用“边角边”证明△AEO和△AHO全等,根据全等三角形对应角相等可得∠AE0=∠AHO,根据角平分线的定义可得∠1=∠2,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3=60°,再根据角平分线的定义和三角形的内角和定理求出∠4=60°,从而得到∠3=∠4,然后利用“边角边”证明△CFO和△CHO全等,根据全等三角形对应边相等可得CF=CH,再根据AC=AH+CH代换即可得证.【详解】证明:如图,在上取一点H,使,连接.∵是的角平分线,∴,在和中,∵∴,∴,∵是的角平分线,∴,∵,∴,∵、是的角平分线,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论