




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省驻马店市正阳县中学高一上数学期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数f(x)=x-lnx,则函数y=f(x)()A.在区间,(1,e)内均有零点B.在区间,(1,e)内均无零点C.在区间内有零点,在区间(1,e)内无零点D.区间内无零点,在区间(1,e)内有零点2.已知点P(cosα,sinα),Q(cosβ,sinβ),则的最大值是()A. B.2C.4 D.3.若a,b是实数,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件4.已知函数,,则()A.的最大值为 B.在区间上只有个零点C.的最小正周期为 D.为图象的一条对称轴5.若sinα=,α是第二象限角,则sin(2α+)=()A. B.C. D.6.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过x的最大整数,则称为高斯函数例如:,,已知函数,则函数的值域为()A. B.C.1, D.1,2,7.化简
的值为A. B.C. D.8.用二分法求方程的近似解时,可以取的一个区间是()A. B.C. D.9.在半径为cm的圆上,一扇形所对的圆心角为,则此扇形的面积为()A. B.C. D.10.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,将角的终边按顺时针方向旋转后经过点,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域为______.12.已知函数在区间上恰有个最大值,则的取值范围是_____13.已知,,则__________14.若且,则取值范围是___________15.命题“存在x∈R,使得x2+2x+5=0”的否定是16.我国古代数学名著《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,现有一“阳马”如图所示,平面,,,,则该“阳马”外接球的表面积为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数且是定义域为的奇函数,(1)若,求的取值范围;(2)若在上的最小值为,求的值18.已知函数的定义域为.(1)求;(2)设集合,若,求实数的取值范围.19.已知函数,(1)证明在上是增函数;(2)求在上的最大值及最小值.20.已知函数(,,),其部分图像如图所示.(1)求函数的解析式;(2)若,且,求的值.21.已知函数,其中(1)求函数的定义域;(2)若函数的最小值为,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】求出导函数,由导函数的正负确定函数的单调性,再由零点存在定理得零点所在区间【详解】当x∈时,函数图象连续不断,且f′(x)=-=<0,所以函数f(x)在上单调递减又=+1>0,f(1)=>0,f(e)=e-1<0,所以函数f(x)有唯一的零点在区间(1,e)内故选:D2、B【解析】,则,则的最大值是2,故选B.3、B【解析】由对数函数单调性即可得到二者之间的逻辑关系.【详解】由可得;但是时,不能得到.则是的必要不充分条件故选:B4、D【解析】首先利用二倍角公式及辅助角公式将函数化简,再结合正弦函数的性质计算可得;【详解】解:函数,可得的最大值为2,最小正周期为,故A、C错误;由可得,即,可知在区间上的零点为,故B错误;由,可知为图象的一条对称轴,故D正确故选:D5、D【解析】根据,求出的值,再将所求式子展开,转化成关于和的式子,然后代值得出结果【详解】因为且为第二象限角,根据得,,再根据二倍角公式得原式=,将,代入上式得,原式=故选D【点睛】本题考查三角函数给值求值,在已知角的取值范围时可直接用同角公式求出正余弦值,再利用和差公式以及倍角公式将目标式转化成关于和的式子,然后代值求解就能得出结果6、C【解析】由分式函数值域的求法得:,又,所以,由高斯函数定义的理解得:函数的值域为,得解【详解】解:因为,所以,又,所以,由高斯函数的定义可得:函数的值域为,故选C【点睛】本题考查了分式函数值域的求法及对新定义的理解,属中档题7、C【解析】根据两角和的余弦公式可得:,故答案为C.8、B【解析】构造函数并判断其单调性,借助零点存在性定理即可得解.【详解】,令,在上单调递增,并且图象连续,,,在区间内有零点,所以可以取的一个区间是.故选:B9、B【解析】由题意,代入扇形的面积公式计算即可.【详解】因为扇形的半径为,圆心角为,所以由扇形的面积公式得.故选:B10、A【解析】根据角的旋转与三角函数定义得,利用两角和的正切公式求得,然后待求式由二倍公式,“1”的代换,变成二次齐次式,转化为的式子,再计算可得【详解】解:将角的终边按顺时针方向旋转后所得的角为,因为旋转后的终边过点,所以,所以.所以.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、且【解析】由根式函数和分式函数的定义域求解.【详解】由,解得且,所以函数的定义域为且故答案为:且12、【解析】将代入函数解析式,求出的取值范围,根据正弦取8次最大值,求出的取值范围【详解】因为,,所以,又函数在区间上恰有个最大值,所以,得【点睛】三角函数最值问题要注意整体代换思想的体现,由的取值范围推断的取值范围13、【解析】构造角,,再用两角和的余弦公式及二倍公式打开.【详解】,,,,,故答案为:【点睛】本题是给值求值题,关键是构造角,应注意的是确定三角函数值的符号.14、或【解析】分类讨论解对数不等式即可.【详解】因为,所以,当时,可得,当时,可得.所以或故答案为:或15、对任何x∈R,都有x2+2x+5≠0【解析】因为命题“存在x∈R,使得x2+2x+5=0”是特称命题,根据特称命题的否定是全称命题,可得命题的否定为:对任何x∈R,都有x2+2x+5≠0故答案为对任何x∈R,都有x2+2x+5≠016、【解析】以,,为棱作长方体,长方体的对角线即为外接球的直径,从而求出外接球的半径,进而求出外接球的表面积.【详解】由题意,以,,为棱作长方体,长方体的对角线即为外接球的直径,设外接球的半径为,则故.故答案为:【点睛】本题考查了多面体外接球问题以及球的表面积公式,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)2【解析】(1)由题意,得,由此可得,再代入解方程可得,由此可得函数在上为增函数,再根据奇偶性与单调性即可解出不等式;(2)由(1)得,,令,由得,利用换元法转化为二次函数的最值,再分类讨论即可求出答案【详解】解:(1)由题意,得,即,解得,由,得,即,解得,或(舍去),∴,∴函数在上为增函数,由,得∴,解得,或,∴的取值范围是;(2)由(1)得,,令,由得,,∴函数转化为,对称轴,①当时,,即,解得,或(舍去);②当时,,解得(舍去);综上:【点睛】本题主要考查函数奇偶性与单调性的综合应用,考查二次函数的最值问题,考查转化与化归思想,考查分类讨论思想,属于中档题18、(1)A(2)【解析】(1)由函数的解析式分别令真数为正数,被开方数非负确定集合A即可;(2)分类讨论和两种情况确定实数的取值范围即可.【详解】(1)由,解得,由,解得,∴.(2)当时,函数在上单调递增.∵,∴,即.于是.要使,则满足,解得.∴.当时,函数在上单调递减.∵,∴,即.于是要使,则满足,解得与矛盾.∴.综上,实数的取值范围为.【点睛】本题主要考查函数定义域的求解,集合之间的关系与运算等知识,意在考查学生的转化能力和计算求解能力.19、(1)证明见解析;(2)当时,有最小值2;当时,有最大值.【解析】(1)根据单调性的定义,直接证明,即可得出结论;(2)根据(1)的结果,确定函数在给定区间的单调性,即可得出结果.【详解】(1)证明:在上任取,,且,,,,,,,即,故在上是增函数;(2)解:由(1)知:在上是增函数,当时,有最小值2;当时,有最大值.【点睛】本题主要考查证明函数单调性,以及由函数单调性求最值,属于常考题型.20、(Ⅰ);(Ⅱ).【解析】【试题分析】(1)根据图像的最高点求得,根据函数图像的零点和最小值位置可知函数的四分之一周期为,由此求得,代入函数上一个点,可求得的值.(2)利用同角三角函数关系和二倍角公式,求得的值,代入所求并计算得结果.【试题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐饮连锁加盟与区域代理合作协议范本
- 餐饮门面租赁合同租赁终止条件与违约责任解析
- 员工培训案例
- 茶园承包与茶叶品牌保护与维权合作协议
- 生态工业园区厂房土地抵押借款合同
- 餐饮连锁品牌加盟加盟商权益保障合同
- 智能家居系统承包安装服务合同范本
- 拆除工程安全责任书:建筑拆除安全合同
- 名医诊疗经验传承师承合同
- 师生夏季安全教育
- DB34∕T 4004-2021 埋地聚乙烯燃气管道定期检验规则
- 2024阀控式铅酸密封蓄电池
- 2022-2023学年山东省泰安市高一下学期期末数学试题(解析版)
- 仓库搬运装卸服务方案
- 示范区城区控制性详细规划说明书
- 马鞍山二中理科创新人才实验班招生考试物理试题
- GB/T 44198-2024空间站科学实验系统集成与验证要求
- 新教材人教版高中物理选择性必修第三册全册各章节知识点考点
- 安徽省马鞍山市2024-2025学年高一数学下学期期末考试试题含解析
- 车库业主与租赁者安装充电桩协议书
- 劳务班组施工合同范本(2024版)
评论
0/150
提交评论