2025届福建省莆田市哲理中学数学九上开学达标检测模拟试题【含答案】_第1页
2025届福建省莆田市哲理中学数学九上开学达标检测模拟试题【含答案】_第2页
2025届福建省莆田市哲理中学数学九上开学达标检测模拟试题【含答案】_第3页
2025届福建省莆田市哲理中学数学九上开学达标检测模拟试题【含答案】_第4页
2025届福建省莆田市哲理中学数学九上开学达标检测模拟试题【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2025届福建省莆田市哲理中学数学九上开学达标检测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在下列性质中,平行四边形不一定具有的是()A.对边相等 B.对边平行 C.对角互补 D.内角和为360°2、(4分)如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.BD=CE B.AD=AE C.DA=DE D.BE=CD3、(4分)将抛物线y=﹣3x2+1向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线为()A.y=﹣3(x﹣2)2+4 B.y=﹣3(x﹣2)2﹣2C.y=﹣3(x+2)2+4 D.y=﹣3(x+2)2﹣24、(4分)如图,D、E分别为△ABC边AC、BC的中点,∠A=60°,DE=6,则下列判断错误的是()A.∠ADE=120° B.AB=12 C.∠CDE=60° D.DC=65、(4分)如图顺次连接等腰梯形四边中点得到一个四边形,再顺次连接所得四边形四边的中点得到的图形是()A.等腰梯形 B.直角梯形 C.菱形 D.矩形6、(4分)如图,▱ABCD中,对角线AC,BD相交于O,BD=2AD,E,F,G分别是OC,OD,AB的中点,下列结论①BE⊥AC②四边形BEFG是平行四边形③EG=GF④EA平分∠GEF其中正确的是()A.①②③ B.①②④ C.①③④ D.②③④7、(4分)如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于35”为一次运算.若运算进行了3次才停止,则x的取值范围是()A.7<x≤11 B.7≤x<11C.7<x<11 D.7≤x≤118、(4分)若关于x的方程有两个相等的实数根,则常数c的值是A.6 B.9 C.24 D.36二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图是甲、乙两名射由运动员的10次射击训练成绩的折线统计图观察图形,比较甲、乙这10次射击成绩的方差、的大小:_____(填“>”、“<”或“=”)10、(4分)如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=6,则AB的长为_____.11、(4分)下表是某校女子羽毛球队队员的年龄分布:年龄/岁13141516人数1121则该校女子排球队队员年龄的中位数为__________岁.12、(4分)某厂去年1月份的产值为144万元,3月份下降到100万元,求这两个月平均每月产值降低的百分率.如果设平均每月产值降低的百分率是x,那么列出的方程是___.13、(4分)如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是_____.三、解答题(本大题共5个小题,共48分)14、(12分)某汽车销售公司经销某品牌款汽车,随着汽车的普及,其价格也在不断下降.今年5月份款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的款汽车,已知款汽车每辆进价为7.5万元,款汽车每辆进价为6万元,公司预计用不多于105万元且不少于102万元的资金购进这两款汽车共15辆,有几种进货方案?(3)按照(2)中两种汽车进价不变,如果款汽车每辆售价为8万元,为打开款汽车的销路,公司决定每售出一辆款汽车,返还顾客现金万元,要使(2)中所有的方案获利相同,值应是多少?15、(8分)计算:(1)|1-2|+.(2)16、(8分)某地重视生态建设,大力发展旅游业,各地旅游团纷沓而至,某旅游团上午6时从旅游馆出发,乘汽车到距离的旅游景点观光,该汽车离旅游馆的距离与时间的关系可以用如图的折线表示.根据图象提供的有关信息,解答下列问题:(1)求该团旅游景点时的平均速度是多少?(2)该团在旅游景点观光了多少小时?(3)求该团返回到宾馆的时刻是几时?17、(10分)在平面直角坐标系中,原点为O,已知一次函数的图象过点A(0,5),点B(﹣1,4)和点P(m,n)(1)求这个一次函数的解析式;(2)当n=2时,求直线AB,直线OP与x轴围成的图形的面积;(3)当△OAP的面积等于△OAB的面积的2倍时,求n的值18、(10分)仔细阅读下面例题,解答问题:例题:已知二次三项式有一个因式是,求另一个因式以及的值,解:设另一个因式为,得:,则解得:另一个因式为,的值为,问题:仿照以上方法解答下列问题:已知二次三项式有一个因式是,求另一个因式以及的值.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)分解因式______.20、(4分)如图,在中,,点是边的中点,点在边上运动,若平分的周长时,则的长是_______.21、(4分)已知b是a,c的比例中项,若a=4,c=16,则b=________.22、(4分)如图,正方形的边长为5cm,是边上一点,cm.动点由点向点运动,速度为2cm/s,的垂直平分线交于,交于.设运动时间为秒,当时,的值为______.23、(4分)若关于的方程有增根,则的值为________.二、解答题(本大题共3个小题,共30分)24、(8分)已知函数y=和y=,A(1,n)、B(m,4)两点均在函数y=的图像上,设两函数y=和y=的图像交于一点P.(1)求实数m,n的值;(2)求P,A,B三点构成的三角形PAB的面积.25、(10分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).(1)求抛物线的解析式;(2)猜想△EDB的形状并加以证明.26、(12分)如图,点D,C在BF上,AC∥DE,∠A=∠E,BD=CF.(1)求证:AB=EF;(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】A、平行四边形的对边相等,故本选项正确;B、平行四边形的对边平行,故本选项正确;C、平行四边形的对角相等不一定互补,故本选项错误;D、平行四边形的内角和为360°,故本选项正确;故选C2、C【解析】

根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【详解】解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项错误;C、添加DA=DE无法求出∠DAB=∠EAC,故本选项正确;D、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误.故选C.3、D【解析】

根据“左加右减、上加下减”的原则进行解答即可.【详解】将抛物线y=﹣3x1+1向左平移1个单位长度所得直线解析式为:y=﹣3(x+1)1+1;再向下平移3个单位为:y=﹣3(x+1)1+1﹣3,即y=﹣3(x+1)1﹣1.故选D.此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.4、D【解析】

由题意可知:DE是△ABC的中位线,然后根据中位线的性质和平行线的性质逐一判断即可.【详解】解:∵D、E分别为△ABC边AC、BC的中点,∴DE∥AB,,∵∠A=60°,DE=6,∴∠ADE=120°,AB=12,∠CDE=60°,∴A、B、C三项是正确的;由于AC长度不确定,而,所以DC的长度不确定,所以D是错误的.故选:D.本题主要考查了三角形的中位线定理,属于基本题型,熟练掌握三角形的中位线定理是解题关键.5、D【解析】

首先作出图形,根据三角形的中位线定理,可以得到,,,再根据等腰梯形的对角线相等,即可证得四边形EFGH的四边相等,即可证得是菱形,然后根据三角形中位线定理即可证得四边形OPMN的一组对边平行且相等,则是平行四边形,在根据菱形的对角线互相垂直,即可证得平行四边形的一组临边互相垂直,即可证得四边形OPMN是矩形.【详解】解:连接AC,BD.∵E,F是AB,AD的中点,即EF是的中位线.,同理:,,.又等腰梯形ABCD中,..四边形EFGH是菱形.是的中位线,∴EFEG,,同理,NMEG,∴EFNM,四边形OPMN是平行四边形.,,又菱形EFGH中,,平行四边形OPMN是矩形.故选:D.本题考查了等腰梯形的性质,菱形的判定,矩形的判定,以及三角形的中位线定理,关键的应用三角形的中位线定理得到四边形EFGH和四边形OPMN的边的关系.6、B【解析】

由平行四边形的性质可得OB=BC,由等腰三角形的性质可判断①正确,由直角三角形的性质和三角形中位线定理可判断③错误,由BG=EF,BG∥EF∥CD可证四边形BEFG是平行四边形,可得②正确.由平行线的性质和等腰三角形的性质可判断④正确.【详解】∵四边形ABCD是平行四边形,∴BO=DO=BD,AD=BC,AB=CD,AB∥BC,又∵BD=2AD,∴OB=BC=OD=DA,且点E是OC中点,∴BE⊥AC,故①正确,∵E、F分别是OC、OD的中点,∴EF∥CD,EF=CD,∵点G是Rt△ABE斜边AB上的中点,∴GE=AB=AG=BG,∴EG=EF=AG=BG,无法证明GE=GF,故③错误,∵BG=EF,BG∥EF∥CD,∴四边形BEFG是平行四边形,故②正确,∵EF∥CD∥AB,∴∠BAC=∠ACD=∠AEF,∵AG=GE,∴∠GAE=∠AEG,∴∠AEG=∠AEF,∴AE平分∠GEF,故④正确,故选B.本题考查了菱形的判定,平行四边形的性质,全等三角形的判定和性质,三角形中位线定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.7、A【解析】

根据运算程序,前两次运算结果小于等于35,第三次运算结果大于35列出不等式组,然后求解即可.【详解】依题意,得:,解得7<x≤1.故选A.本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.8、B【解析】

根据判别式的意义得到△=62-4c=0,然后解关于c的一次方程即可.【详解】∵方程x2+6x+c=0有两个相等的实数根,∴△=62-4×1×c=0,解得:c=9,故选B.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.二、填空题(本大题共5个小题,每小题4分,共20分)9、<【解析】

利用折线统计图可判断乙运动员的成绩波动较大,然后根据方差的意义可得到甲乙的方差的大小.【详解】解:由折线统计图得乙运动员的成绩波动较大,

所以.

故答案为:<本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.10、【解析】

根据勾股定理得出S2+S1=S3,求出S3,即可求出AB.【详解】解:∵由勾股定理得:AC2+BC2=AB2,∴S2+S1=S3,∵S1=5,S2=6,∴S3=11,∴AB=,故答案为:.本题考查了勾股定理和正方形的性质,能求出S3的值是解此题的关键.11、15.【解析】

中位数有2种情况,共有2n+1个数据时,从小到大排列后,,中位数应为第n+1个数据,可见,大于中位数与小于中位数的数据都为n个;共有2n+2个数据时,从小到大排列后,中位数为中间两个数据平均值,大小介于这两个数据之间,可见大于中位数与小于中位数的数据都为n+1个,所以这组数据中大于或小于这个中位数的数据各占一半,中位数有一个.【详解】解:总数据有5个,中位数是从小到大排,第3个数据为中位数,即15为这组数据的中位数.故答案为:15本题考查中位数的定义,解题关键是熟练掌握中位数的计算方法,即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).12、144(1﹣x)2=1.【解析】

设平均每月产值降低的百分率是x,那么2月份的产值为144(1-x)万元,3月份的产值为144(1-x)2万元,然后根据3月份的产值为1万元即可列出方程.【详解】设平均每月产值降低的百分率是x,则2月份的产值为144(1﹣x)万元,3月份的产值为144(1﹣x)2万元,根据题意,得144(1﹣x)2=1.故答案为144(1﹣x)2=1.本题考查由实际问题抽象出一元二次方程-求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到3月份的产值的等量关系是解决本题的关键.13、175°【解析】如图所示,∵∠ADC、∠BCD的平分线交于点O1,∴∠O1DC+∠O1CD=(∠ADC+∠DCB),∵∠O1DC、∠O1CD的平分线交于点O2,∴∠O2DC+∠O2CD=(∠O1DC+∠O1CD)=(∠ADC+∠DCB),同理可得,∠O3DC+∠O3CD=(∠O2DC+∠O2CD)=(∠ADC+∠DCB),由此可得,∠O5DC+∠O5CD=(∠O4DC+∠O4CD)=(∠ADC+∠DCB),∴△CO5D中,∠CO5D=180°﹣(∠O5DC+∠O5CD)=180°﹣(∠ADC+∠DCB),又∵四边形ABCD中,∠DAB+∠ABC=200°,∴∠ADC+∠DCB=160°,∴∠CO5D=180°﹣×160°=180°﹣5°=175°,故答案为175°.三、解答题(本大题共5个小题,共48分)14、(1)今年5月份A款汽车每辆售价9万元;(2)共有3种进货方案:A款汽车8辆,B款汽车7辆;A款汽车9辆,B款汽车6辆;A款汽车10辆,B款汽车5辆;(3)当=0.5时,(2)中所有方案获利相同.【解析】

(1)求单价,总价明显,应根据数量来列等量关系,等量关系为:今年的销售数量=去年的销售数量;(2)关系式为:102≤A款汽车总价+B款汽车总价≤105;(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可.【详解】(1)设今年5月份A款汽车每辆售价m万元,则:解得:m=9;经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆,则:102≤7.5x+6(15-x)≤105,解得:∵x的正整数解为8,9,10,∴共有3种进货方案:A款汽车8辆,B款汽车7辆;A款汽车9辆,B款汽车6辆;A款汽车10辆,B款汽车5辆;(3)设总获利为W元,购进A款汽车x辆,则:W=(9-7.5)x+(8-6-)(15-x)=(-0.5)x+30-15,当=0.5时,(2)中所有方案获利相同.本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.15、(1)0;(2).【解析】

(1)根据绝对值的意义、零指数幂的意义计算;

(2)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【详解】(1)解:原式.(2)解:原式.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16、(1)90千米/时;(2)4小时;(3)15时.【解析】

(1)根据路程除以时间等于速度,可得答案;

(2)根据路程不变,可得相应的自变量的范围;

(3)根据待定系数法,可得函数关系式,根据自变量与函数值得对应关系,可得答案.【详解】解:(1)(千米/时)答:该团去五莲山旅游景点时的平均速度是90千米/时;(2)由横坐标得出8时到达景点,12时离开景点,小时,答:该团在五莲山旅游景点游玩了4小时.;(3)设该团返回途中函数关系式是,由题意,得,解得,返回途中函数关系式是,当时,,答:该团返回到宾馆的时刻是15时.本题考查的是函数图像,熟练掌握函数图像是解题的关键.17、(1)y=x+5;(2)5;(1)7或1【解析】

(1)利用待定系数法求一次函数的解析式;(2)设直线AB交x轴于C,如图,则C(﹣5,0),然后根据三角形面积公式计算S△OPC即可;(1)利用三角形面积公式得到×5×|m|=2××1×5,解得m=2或m=﹣2,然后利用一次函数解析式计算出对应的纵坐标即可.【详解】解:(1)设这个一次函数的解析式是y=kx+b,把点A(0,5),点B(﹣1,4)的坐标代入得:,解得:k=1,b=5,所以这个一次函数的解析式是:y=x+5;(2)设直线AB交x轴于C,如图,当y=0时,x+5=0,解得x=﹣5,则C(﹣5,0),当n=2时,S△OPC=×5×2=5,即直线AB,直线OP与x轴围成的图形的面积为5;(1)∵当△OAP的面积等于△OAB的面积的2倍,∴×5×|m|=2××1×5,∴m=2或m=﹣2,即P点的横坐标为2或﹣2,当x=2时,y=x+5=7,此时P(2,7);当x=﹣2时,y=x+5=1,此时P(﹣2,1);综上所述,n的值为7或1.本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.18、另一个因式为,的值为【解析】

设另一个因式为(x+n),得2x2-5x-k=(2x-3)(x+n)=2x2+(2n-3)x-3n,可知2n-3=-5,k=3n,继而求出n和k的值及另一个因式.【详解】解:设另一个因式为(x+n),得:2x2-5x-k=(2x-3)(x+n)则2x2-5x-k=2x2+(2n-3)x-3n,解得:另一个因式为,的值为,本题考查因式分解的应用,正确读懂例题,理解如何利用待定系数法求解是解本题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、(2b+a)(2b-a)【解析】

运用平方差公式进行因式分解:a2-b2=(a+b)(a-b).【详解】(2b+a)(2b-a).故答案为:(2b+a)(2b-a)本题考核知识点:因式分解.解题关键点:熟记平方差公式.20、【解析】

延长CA至M,使AM=AB,连接BM,作AN⊥BM于N,由DE平分△ABC的周长,又CD=DB,得到ME=EC,根据中位线的性质可得DE=BM,再求出BM的长即可得到结论.【详解】解:延长CA至M,使AM=AB,连接BM,作AN⊥BM于N,

∵DE平分△ABC的周长,CD=DB,

∴ME=EC,

∴DE=BM,

∵∠BAC=60°,

∴∠BAM=120°,

∵AM=AB,AN⊥BM,

∴∠BAN=60°,BN=MN,∴∠ABN=30°,∴AN=AB=1,∴BN=,

∴BM=2,

∴DE=,

故答案为:.本题考查了三角形的中位线的性质,等腰三角形的性质,含30°的直角三角形的性质以及勾股定理等知识点,作出辅助线综合运用基本性质进行推理是解题的关键.21、±8【解析】

根据比例中项的定义即可求解.【详解】∵b是a,c的比例中项,若a=4,c=16,∴b2=ac=4×16=64,∴b=±8,故答案为±8此题考查了比例中项的定义,如果作为比例线段的内项是两条相同的线段,即a∶b=b∶c或,那么线段b叫做线段a、c的比例中项.22、2【解析】

连接ME,根据MN垂直平分PE,可得MP=ME,当时,BC=MP=5,所以可得EM=5,AE=3,可得AM=DP=4,即可计算出t的值.【详解】连接ME根据MN垂直平分PE可得为等腰三角形,即ME=PM故答案为2.本题主要考查等腰三角形的性质,这类题目是动点问题的常考点,必须掌握方法.23、;【解析】

先将m视为常数求解分式方程,得出方程关于m的解,再根据方程有增根判断m的值.【详解】去分母得:2x+1-x-2=m解得:x=m+1∵分式方程有增根∴x=-2∴m+1=-2解得:m=-1故答案为;-1.本题考查解分式方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论