上海市北蔡高中2025届高一上数学期末监测试题含解析_第1页
上海市北蔡高中2025届高一上数学期末监测试题含解析_第2页
上海市北蔡高中2025届高一上数学期末监测试题含解析_第3页
上海市北蔡高中2025届高一上数学期末监测试题含解析_第4页
上海市北蔡高中2025届高一上数学期末监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市北蔡高中2025届高一上数学期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知扇形周长为,圆心角为,则扇形面积为()A. B.C. D.2.已知集合,则()A. B.C. D.3.设函数f(x)=2-x,x≤01,x>0,则满足A.(-∞,-1]C.(-1,0) D.(-4.已知正实数满足,则的最小值是()A B.C. D.5.若,则的值为A.0 B.1C.-1 D.26.设,,,则,,三者的大小关系是()A. B.C. D.7.已知实数,,且,则的最小值为()A. B.C. D.8.若,则()A. B.C. D.9.在平行四边形中,,,为边的中点,,则()A.1 B.2C.3 D.410.函数的部分图象如图所示,则的值分别是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数=,则=12.我国著名的数学家华罗庚先生曾说:数缺形时少直观,形缺数时难人微;数形结合百般好,隔裂分家万事休,在数学学习和研究中,常用函数的图象来研究函数的性质.请写出一个在上单调递增且图象关于y轴对称的函数:________________13.已知函数,的值域为,则实数的取值范围为__________.14.若实数x,y满足,且,则的最小值为___________.15.已知,则_______.16.若,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在R上的奇函数,且当时,,现已画出函数f(x)在y轴左侧的图象,如图所示(1)请补出函数,剩余部分的图象,并根据图象写出函数,的单调增区间;(2)求函数,的解析式;(3)已知关于x的方程有三个不相等的实数根,求实数的取值范围18.“百姓开门七件事,事事都会生垃圾,垃圾分类益处多,环境保护靠你我”,为了推行垃圾分类,某公司将原处理垃圾可获利万元的一条处理垃圾流水线,通过技术改造后,开发引进生态项目.经过测算,发现该流水线改造后获利万元与技术投入万元之间满足的关系式:.该公司希望流水线改造后获利不少于万元,其中为常数,且.(1)试求该流水线技术投入的取值范围;(2)求流水线改造后获利的最大值,并求出此时的技术投入的值.19.已知定义域为的函数是奇函数.(1)求的值;(2)判断函数单调性(只写出结论即可);(3)若对任意的不等式恒成立,求实数的取值范围20.某班级欲在半径为1米的圆形展板上做班级宣传,设计方案如下:用四根不计宽度的铜条将圆形展板分成如图所示的形状,其中正方形ABCD的中心在展板圆心,正方形内部用宣传画装饰,若铜条价格为10元/米,宣传画价格为20元/平方米,展板所需总费用为铜条的费用与宣传画的费用之和(1)设,将展板所需总费用表示成的函数;(2)若班级预算为100元,试问上述设计方案是否会超出班级预算?21.求下列各式的值:(1);(2)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】周长为则,代入扇形弧长公式解得,代入扇形面积公式即可得解.【详解】由题意知,代入方程解得,所以故选:B【点睛】本题考查扇形的弧长、面积公式,属于基础题.2、A【解析】对集合B中的分类讨论分析,再根据集合间的关系判断即可【详解】当时,,当时,,当时,,所以,或,或因为,所以.故选:A3、D【解析】画出函数的图象,利用函数的单调性列出不等式转化求解即可【详解】解:函数f(x)=2满足f(x+1)<f(2x),可得2x<0≤x+1或2x<x+1⩽0,解得x∈(-故选:D4、B【解析】根据题中条件,得到,展开后根据基本不等式,即可得出结果.【详解】因为正实数满足,所以,当且仅当,即时,等号成立.故选:B.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5、A【解析】由题意得a不等于零,或,所以或,即的值为0,选A.6、D【解析】根据对数的运算变形、,再根据对数函数的性质判断即可;【详解】解:,,因为函数在定义域上单调递增,且,所以,即,故选:D7、C【解析】由题可得,则由展开利用基本不等式可求.【详解】,,且,则,,当且仅当时,等号成立,故的最小值为.故选:C.8、A【解析】利用作为分段点进行比较,从而确定正确答案.【详解】,所以.故选:A9、D【解析】以为坐标原点,建立平面直角坐标系,设,再利用平面向量的坐标运算求解即可【详解】以坐标原点,建立平面直角坐标系,设,则,,,,故,由可得,即,化简得,故,故,,故故选:D10、A【解析】根据的图象求得,求得,再根据,求得,求得的值,即可求解.【详解】根据函数的图象,可得,可得,所以,又由,可得,即,解得,因为,所以.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意得,∴答案:12、(答案不唯一)【解析】利用函数的单调性及奇偶性即得.【详解】∵函数在上单调递增且图象关于y轴对称,∴函数可为.故答案为:.13、##【解析】由题意,可令,将原函数变为二次函数,通过配方,得到对称轴,再根据函数的定义域和值域确定实数需要满足的关系,列式即可求解.【详解】设,则,∵,∴必须取到,∴,又时,,,∴,∴.故答案为:14、8【解析】由给定条件可得,再变形配凑借助均值不等式计算作答.【详解】由得:,又实数x,y满足,则,当且仅当,即时取“=”,由解得:,所以当时,取最小值8.故答案为:8【点睛】思路点睛:在运用基本不等式时,要特别注意“拆”、“拼”、“凑”等技巧,使用其满足基本不等式的“一正”、“二定”、“三相等”的条件.15、【解析】直接利用二倍角的余弦公式求得cos2a的值【详解】∵.故答案为:16、1【解析】由已知结合两角和的正切求解【详解】由,可知tan(α+β)=1,得,即tanα+tanβ=,∴故答案为1【点睛】本题考查两角和的正切公式的应用,是基础的计算题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)图象见解析,函数的单调增区间为;(2);(3).【解析】(1)根据奇函数的图象特征即可画出右半部分的图象,结合图象,即可得出单调增区间;(2)根据函数的奇偶性即可直接求出函数的解析式;(3)由(2)得出函数的解析式,画出函数图象,利用数形结合的数学思想即可得出m的取值范围.【小问1详解】剩余的图象如图所示,有图可知,函数的单调增区间为;【小问2详解】因为当时,,所以当时,则,有,由为奇函数,得,即当时,,又,所以函数的解析式为;【小问3详解】由(2)得,,作出函数与图象,如图,由图可知,当时,函数与图象有3个交点,即方程有3个不等的实根.所以m的取值范围为.18、(1);(2)当时,,此时;当时,,此时.【解析】(1)由题意得出,解此不等式即可得出的取值范围;(2)比较与的大小关系,分析二次函数在区间上的单调性,由此可得出函数的最大值及其对应的的值.【详解】(1),,由题意可得,即,解得,因此,该流水线技术投入的取值范围是;(2)二次函数的图象开口向下,且对称轴为直线.①当时,即当时,函数在区间上单调递增,在区间上单调递减,所以,;②当时,即当时,函数在区间上单调递减,所以,.综上所述,当时,;当时,【点睛】本题考查二次函数模型的应用,同时也考查了二次函数最值的求解,考查分类讨论思想的应用,属于中等题.19、(1),;(2)见解析;(3).【解析】(1)根据函数奇偶性得,,解得的值;最后代入验证,(2)可举例比较大小确定单调性,(3)根据函数奇偶性与单调性将不等式化简为,再根据恒成立转化为对应函数最值问题,最后根据函数最值得结果.【详解】(1)在上是奇函数,∴,∴,∴,∴,∴,∴,∴,∴,经检验知:,∴,(2)由(1)可知,在上减函数.(3)对于恒成立,对于恒成立,在上是奇函数,对于恒成立,又在上是减函数,,即对于恒成立,而函数在上的最大值为2,,∴实数的取值范围为【点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.20、(1);(2)上述设计方案是不会超出班级预算【解析】(1)过点O作,垂足为H,用表示出OH和PH,从而可得铜条长度和正方形的面积,进而得出函数式;(2)利用同角三角函数的关系和二次函数的性质求出预算的最大值即可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论